
Background 
Providing high-quality care while maintaining cost-
effectiveness is one of the major challenges facing 
healthcare organizations, including hospitals and medical 
centers. High-quality care relies on accurate diagnosis and 
effective treatment, as inappropriate clinical decisions 
may lead to catastrophic and unacceptable consequences.1 
Cardiovascular diseases (CVDs) represent a critical 
domain where timely and precise diagnosis is essential, 
given their high mortality rates worldwide. The term CVD 
encompasses a wide spectrum of disorders that affect the 
heart and blood vessels, influencing the circulation and 
pumping function of the heart.2-5

According to the World Health Organization, in 2012, 
nearly 17 million deaths worldwide were attributed to heart 
attack and stroke, positioning CVDs as the leading cause 
of adult mortality.6 Reports further indicate that CVDs 
account for almost half of all deaths in developed nations 
and remain a major cause of mortality in developing 

countries, including Iran. According to official statistics 
from the Iranian Ministry of Health, over 40% of deaths 
in the country are due to CVDs.2,5,7 The diagnostic process 
for CVDs is highly complex and requires exceptional 
accuracy; however, traditional clinical assessments, 
typically based on physicians’ expertise and experience, 
are prone to errors.8 Despite technological advances in 
recent decades that have facilitated diagnosis, controlling 
CVDs continues to be a primary priority for healthcare 
systems worldwide.9

Data mining has emerged as a promising approach to 
extract valuable insights from large-scale medical databases 
that often remain underutilized. The applications of this 
process in healthcare include supporting decision-making 
in treatment selection, clinical guideline development, 
resource allocation, and evaluating therapeutic outcomes 
10. Broadly, data mining techniques can be categorized into 
descriptive and predictive types. While descriptive mining 
identifies patterns and associations from past activities, 
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Abstract
Background: Cardiovascular diseases (CVDs) remain a leading cause of mortality, demanding timely and accurate diagnosis. 
Traditional clinical assessments are often prone to errors, highlighting the need for predictive models that leverage large-scale 
clinical data, including data mining techniques that can extract data from complex medical datasets. This study comparatively 
analyzed classification-based data mining algorithms for predicting CVDs and evaluating their performance across multiple metrics 
to identify the most effective predictive model for clinical applications.
Methods: The UCI Heart Disease dataset (270 records with 14 clinical attributes) was used. Data preprocessing involved cleaning, 
normalization, discretization, and partitioning into training (70%) and testing (30%) sets. NB, ANN, kNN, SVM, and CART 
algorithms were implemented using Orange. Model performance was evaluated by accuracy, sensitivity, specificity, precision, 
recall, F-measure, and AUC using hold-out validation and 5-fold cross-validation. Feature importance and decision rules were 
extracted from tree-based models for interpretability.
Results: SVM and NB achieved the highest overall predictive performance (accuracy: 84.44%, sensitivity: 86.00%, specificity: 
82.50%, AUC: 0.9136; accuracy: 84.07%, AUC: 0.9133). ANN and KNN demonstrated moderate predictive ability, while CART 
(accuracy: 78.52%) provided interpretable decision rules. Decision tree (DT) analysis identified thalassemia status, chest pain 
type, and number of major vessels colored as the most influential attributes. Several clinically interpretable rules were extracted, 
offering potential guidance for risk assessment. Statistical comparisons indicated no significant difference between SVM and NB 
performance, suggesting both models provide reliable predictions.
Conclusion: SVM and NB offer robust predictive capabilities for CVD, outperforming traditional statistical approaches. DT models 
provide additional interpretability, facilitating clinical understanding and application. These findings underscore the importance 
of evaluating multiple predictive models in context-specific datasets to identify optimal approaches for risk assessment, resource 
allocation, and quality of care improvement, thereby enhancing early detection and supporting evidence-based CVD management.
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predictive mining utilizes historical data to forecast future 
outcomes.11,12 The efficiency of these algorithms depends 
on several factors, such as the availability of required 
variables, the size and quality of datasets, and the accuracy 
of data.

Although conventional diagnostic markers for CVDs 
include symptoms, electrocardiograms, and enzymatic 
indicators, incorporating additional patient attributes 
(e.g., age, gender, family history, and heart rate) can 
substantially enhance diagnostic accuracy. Numerous 
studies have applied data mining techniques to 
cardiovascular datasets, employing a number of models, 
such as decision trees (DTs), association rule mining, 
Bayesian networks, and artificial neural networks (ANNs). 
For instance, DT models have been used to identify risk 
factor relationships,13 while DTs and association rules have 
evaluated critical risk predictors.14, 15 Moreover, Bayesian 
networks have been applied to assess survival predictors 
in cardiac patients.16

However, most of these studies have focused on 
applying a single data mining algorithm or utilized limited 
evaluation criteria, making it difficult to determine the 
most reliable model for CVD prediction. Furthermore, 
there is limited evidence comparing the performance of 
multiple classification algorithms on large, real-world 
cardiovascular datasets using comprehensive performance 
metrics. This gap highlights the need for systematic 
evaluation to identify the most effective predictive models 
for clinical use.

Accurate prediction not only plays a vital role in 
guiding treatment strategies but also supports optimal 
resource allocation in hospitals, ultimately improving 
the quality of care delivery. Therefore, the present study 
aims to perform a comparative analysis of classification-
based data mining algorithms for predicting CVDs by 
evaluating their performance across key metrics such 
as accuracy, sensitivity, specificity, precision, recall, and 
F-measure in order to identify the most effective model 
for CVD prediction.

Methods 
Dataset
The method adopted in this study for predicting CVDs 
consists of several steps: dataset selection, data preparation 
and normalization, data mining and classification, model 
evaluation, and knowledge extraction.

The publicly available heart disease dataset from the 
University of California, Irvine (UCI) Machine Learning 
(ML) Repository was employed for this purpose. This 
dataset contains multiple clinical attributes that are 
highly relevant for identifying patterns associated with 
cardiovascular disorders. After handling missing values 
and removing outliers, a total of 270 complete records were 
retained for analysis. The dataset includes 14 attributes, 
where the 14th attribute (heartdisease) indicates the 
presence (positive cases) or absence (negative cases) of 
CVD, which was used as the target class.

The dataset is balanced, consisting of 120 negative cases 
(absence of the disease) and 150 positive cases (presence 
of the disease), ensuring that model training is not biased 
toward any class. The attributes contain both numerical 
(continuous) and categorical (discrete) variables. Five 
attributes were continuous, and the remaining attributes 
were discrete. To enhance classification performance and 
simplify analysis, all continuous variables were discretized 
using equal-width binning, converting them into discrete 
intervals. The discretization thresholds were determined 
based on standard clinical reference ranges and data 
distribution percentiles. For instance, age was grouped 
into four categories (29–39, 40–49, 50–59, and 60–77 
years). In addition, resting blood pressure was classified 
as normal (< 120 mm Hg ), elevated (120–129 mm Hg 
), stage 1 hypertension (130–139 mm Hg ), and stage 2 
hypertension ( ≥ 140 mm Hg ). Further, cholesterol levels 
were classified according to established clinical cutoffs 
(< 200 mg/dL, 200–239 mg/dL, and ≥ 240 mg/dL). Other 
continuous variables, such as maximum heart rate and 
ST depression (old peak), were discretized using quartile-
based thresholds derived from the study cohort.

A detailed description of the dataset attributes is 
provided in Table 1.

Data Preprocessing
The preprocessing phase involved three main steps:
•	 Data cleaning: Missing and inconsistent records were 

removed.
•	 Normalization and discretization: Continuous features 

were transformed into discrete intervals using equal-
width binning to enhance model interpretability and 
improve classification performance.

Table 1. Description of the Attributes in the UCI Heart Disease Dataset

No.
Attribute 
(Dataset name)

Description

1 age Age of the patient (in years)

2 sex Gender of the patient

3 cp Chest pain type

4 restbp Resting blood pressure

5 chol Serum cholesterol level

6 fbs Fasting blood sugar

7 restecg Resting electrocardiographic results

8 maxhrate Maximum heart rate achieved

9 exang Exercise-induced angina

10 oldpeak ST depression induced by exercise relative to rest

11 slope Slope of the peak exercise ST segment

12 ncolored
Number of major vessels (0–3) colored by 
fluoroscopy

13 thal
Thalassemia status: 3 = normal; 6 = fixed defect; 
7 = reversible defect

14
heartdisease 
(class)

Diagnosis of heart disease (presence or absence)

Note. UCI: The University of California, Irvine.
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•	 Partitioning: The dataset was divided into training 
and testing subsets with a 70:30 ratio, resulting in 189 
samples for training and 81 samples for testing.

Classification Algorithms
The experiments were conducted using Orange (version 
2.7.8), an open-source data mining and ML software that 
provides a wide range of tools for classification, regression, 
and clustering. The following classification-based data 
mining algorithms were implemented and compared, with 
their main parameters explicitly set for reproducibility:
1.	 Naïve Bayes (NB): Default prior probabilities and 

Gaussian likelihood for continuous features.
2.	 ANN: One hidden layer with 10 neurons, learning 

rate = 0.01, and activation function = sigmoid.
3.	 k-Nearest neighbors (kNNs): k = 5, Euclidean distance 

metric.
4.	 Support vector machine (SVM): Radial basis function 

kernel, C = 1, and gamma = 0.1.
5.	 Classification Tree (CART): Gini impurity criterion, 

ID3 Algorithm, and maximum depth = 5.
The primary objective of classification was to predict 

whether a patient has CVD (positive class) or not 
(negative class).

Model Evaluation
Two evaluation strategies were applied to ensure 
robustness:
•	 Hold-out validation: Using the 70:30 training–testing 

split described above.
•	 k-Fold cross-validation: The dataset was randomly 

partitioned into k = 5 equal subsets. In each iteration, 
one subset was used for testing, while the remaining 
four subsets were employed for training. The process 
was repeated 5 times until every subset had served 
as a test set once, and the final performance was 
obtained by averaging the results.

The following evaluation metrics were derived from 
the confusion matrix to comprehensively assess model 
performance:

Accuracy = (TP + TN) / (TP + TN + FP + FN)

Sensitivity (Recall) = TP / (TP + FN)

Specificity = TN / (TN + FP)

Precision = TP / (TP + FP)
F-measure = 2 × (Precision × Recall) / (Precision + Recall)

where TP, TN, FP, and FN represent true positives, true 
negatives, false positives, and false negatives, respectively.

Knowledge Extraction
Following model evaluation, feature importance and 
decision rules were analyzed (particularly from tree-
based models) to identify the most influential clinical 
attributes contributing to CVD prediction. This step 
provides insights for potential clinical interpretation and 
knowledge discovery.

Results
In total, 270 records were analyzed in the present study, 
comprising 120 negative cases (absence of CVDs) and 
150 positive cases (presence of CVDs). The age of the 
participants ranged from 29 to 77 years, with a mean age 
of 54.43 years. Of the total sample, 87 individuals (32.2%) 
were female, and 183 individuals (67.8%) were male. The 
dataset included 14 clinical attributes relevant to CVD 
prediction, encompassing both continuous and categorical 
variables, which were all preprocessed and discretized to 
facilitate classification.

Classification Performance
Five widely used classification-based data mining 
algorithms—NB, ANN, kNN, SVM, and CART—were 
implemented to predict the presence of CVDs. The 
models were evaluated using multiple performance 
metrics, including accuracy, sensitivity, specificity, 
precision, recall, F-measure, and area under the receiver 
operating characteristic curve (AUC). Table 2 summarizes 
the performance of each algorithm.

The results indicated that SVM achieved the highest 
overall performance, slightly surpassing NB, with an 
accuracy of 84.44%, a sensitivity of 86.00%, a specificity 
of 82.50%, and an AUC of 0.9136. In addition, NB 
demonstrated comparable performance, with an accuracy 
of 84.07% and an AUC of 0.9133. Moreover, ANN and 
kNN exhibited moderate predictive ability, while the 
classification tree, though slightly lower in accuracy 
(78.52%), provided interpretable decision rules and a 
simplified model structure.

Although SVM achieved a slightly higher accuracy 
(84.44%) compared to NB (84.07%) and a marginally 

Table 2. Performance Metrics of Classification Algorithms

Algorithm Accuracy Sensitivity Specificity AUC F-measure Precision Recall

Classification tree 0.7852 0.8267 0.7333 0.8101 0.8105 0.7949 0.8267

Naïve bayes 0.8407 0.8467 0.8333 0.9133 0.8552 0.8639 0.8467

SVM 0.8444 0.8600 0.8250 0.9136 0.8600 0.8600 0.8600

Neural network 0.8074 0.8267 0.7833 0.9058 0.8267 0.8267 0.8267

kNN 0.7963 0.8400 0.7417 0.8831 0.8208 0.8025 0.8400

Note. AUC: The area under the receiver operating characteristic curve; SVM: Support vector machine; kNN: k-nearest neighbors.
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higher AUC (0.9136 vs. 0.9133), the differences between 
the two classifiers were minimal. To assess whether these 
differences were statistically significant, a McNemar’s 
test was conducted for accuracy, and a DeLong test was 
performed to compare AUC values. The results revealed 
no statistically significant difference between SVM and 
NB for either accuracy (P > 0.05) or AUC (P > 0.05), 
suggesting that both classifiers display comparable 
predictive performance for CVD in this dataset. These 
findings highlight that, despite the numerical superiority 
of SVM in some metrics, NB provides an equally effective 
predictive model while offering simpler interpretability 
and computational efficiency.

Decision Tree Analysis
To enhance interpretability, a DT was constructed using 
the ID3 algorithm. This algorithm selects the attribute with 
the highest information gain as the root node, iteratively 
splitting nodes to construct the tree. Information gain, 
gain ratio, and Gini index were calculated for each 
attribute (Table 3).

The attribute “thal” (thalassemia status) was identified 
as the root node due to its highest information gain, 
followed by chest pain type (cp) and number of major 
vessels colored (ncolored), among others. The final DT 
consisted of five levels, 41 nodes, and 27 leaves, providing 
a clear visual representation of attribute influence on 
CVD prediction (Figure 1). This tree illustrates the 
relative importance of clinical attributes in determining 

the likelihood of disease and offers interpretable rules for 
potential clinical application.

Based on the DT analysis, several clinical rules were 
extracted to predict the risk of CVDs. These rules provide 
clear guidance on how specific combinations of patient 
characteristics and clinical measurements influence 
the likelihood of disease. A summary of these extracted 
clinical rules is presented in Table 4.

Receiver Operating Characteristic Curve Analysis
ROC curves were generated to compare the discriminatory 

Table 3. Attribute Evaluation for Decision Tree Construction

Attribute Information gain Gain ratio Gini index

thal 0.2085 0.1712 0.0681

cp 0.1922 0.1115 0.0627

ncolored 0.1752 0.1120 0.0574

exang 0.1299 0.1420 0.0434

maxhrate 0.1151 0.0844 0.0359

oldpeak 0.1124 0.0748 0.0357

slope 0.1111 0.0864 0.0369

sex 0.0668 0.0737 0.0218

age 0.0564 0.0288 0.0190

restecg 0.0241 0.0228 0.0082

restbp 0.0160 0.0090 0.0054

chol 0.0152 0.0108 0.0051

fbs 0.0001 0.0003 0.0000

Figure 1. Decision Tree Constructed Using the ID3 Algorithm

Table 4. Clinical Rules Extracted From the Decision Tree for Cardiovascular Disease Prediction

Rule Path Prediction Interpretation

1
thal = negative → cp = typical angina → 
sex = female → maxhrate ≤ 159 Negative for CVDs

Female patients with negative thalassemia status, experiencing typical angina, and with 
maximum heart rate ≤ 159 are likely not to have CVDs.

2
thal = negative → cp = typical angina → 
sex = male → oldpeak > 1.5 Positive for CVDs

Male patients with negative thalassemia status, experiencing typical angina, and ST 
depression (oldpeak) greater than 1.5 are at high risk of CVDs.

3
thal = positive → cp = atypical angina 
→ exang = yes

Positive for CVDs
Patients with positive thalassemia status, atypical angina, and exercise-induced angina are 
very likely to have CVD.

4
thal = negative → cp = non-anginal pain 
→ cholesterol > 240 Positive for CVDs

Patients with negative thalassemia status, non-anginal chest pain, and very high cholesterol 
( > 240 mg/dL) are at high risk of CVDs.
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power of each classifier. Consistent with performance 
metrics, SVM demonstrated the highest area under 
the curve (AUC = 0.9136), slightly outperforming NB 
(AUC = 0.9133), indicating superior predictive capability. 
The DT, while slightly lower in AUC, provided the 
advantage of interpretability, which is critical for clinical 
decision support (Figure 2).

Discussion
The present study comparatively evaluated five 
classification-based data mining algorithms—NB, ANN, 
kNN, SVM, and CART—for predicting CVDs using the 
UCI Heart Disease dataset. Our findings demonstrated that 
SVM and NB exhibited the strongest overall performance, 
achieving accuracies of 84.44% and 84.07%, respectively, 
with corresponding AUC values of 0.9136 and 0.9133. 
These models outperformed ANN (accuracy: 80.74%, 
AUC: 0.9058), kNN (accuracy: 79.63%, AUC: 0.8831), 
and CART (accuracy: 78.52%, AUC: 0.8101) in both 
hold-out and 5-fold cross-validation settings. Statistical 
analyses, including McNemar’s test for accuracy and 
DeLong’s test for AUC, revealed no significant differences 
between SVM and NB (P > 0.05), indicating comparable 
predictive efficacy. These results underscore the utility 
of ML approaches in enhancing CVD risk stratification, 
particularly through models that balance predictive power 
with computational efficiency.

The superior performance of SVM and NB aligns with 
their inherent strengths in handling high-dimensional, 
nonlinear data typical of clinical datasets. The effectiveness 
of SVM stems from its ability to maximize the margin 
between classes via kernel functions (e.g., radial basis 
function in this study), which facilitates robust separation 
of CVD-positive and -negative cases despite potential class 
imbalances or noise in attributes such as serum cholesterol 
or resting blood pressure.17 Similarly, the probabilistic 
framework of NB, assuming conditional independence 
among features, enables efficient computation and 
high sensitivity (86.00% for SVM and 84.67% for NB), 

making it particularly suitable for early detection where 
false negatives could have severe clinical consequences.18 
The moderate performance of ANN and kNN may be 
attributed to their sensitivity to hyperparameters and 
data scaling; for instance, the single hidden layer of ANN 
with sigmoid activation might not capture complex 
interactions as effectively as deeper architectures, while 
the reliance of kNN on the Euclidean distance could be 
influenced by outliers in continuous features, such as 
the maximum heart rate.19 CART, although yielding the 
lowest accuracy, offers valuable interpretability through 
decision rules, which is crucial for clinical translation.20 
The DT identified thalassemia status (thal), chest pain 
type (cp), and number of major vessels colored by 
fluoroscopy (ncolored) as the most influential attributes, 
based on information gain (0.2085 for thal) and Gini 
index rankings. These features reflect pathophysiological 
mechanisms: Thalassemia defects impair myocardial 
perfusion, atypical chest pain signals ischemic events, 
and ncolored indicates coronary artery occlusion severity. 
The extracted rules, such as “thal = positive → cp = atypical 
angina → exang = yes,” predicting positive CVD, provide 
actionable insights into risk assessment, potentially 
guiding targeted interventions, such as angiography or 
lifestyle modifications.

Comparisons with prior literature reveal both 
consistencies and variations in model performance, 
highlighting the context-specific nature of ML applications 
in CVD prediction. Using the same UCI dataset, our SVM 
accuracy (84.44%) is comparable to the findings of the 
study by Alsabhan and Alfadhly, demonstrating SVM 
accuracies exceeding 85% with similar preprocessing steps, 
including discretization and normalization.12 However, 
more recent investigations employing advanced ensemble 
or optimization techniques have achieved higher metrics. 
For example, a hybrid framework by Teja and Rayalu 
using optimizable KNN attained 95.04% accuracy and 
0.99 AUC on the UCI dataset through correlation-based 
feature selection and hyperparameter tuning, surpassing 
our results, possibly due to their integration of genetic 
algorithms for feature optimization.13 Likewise, Kumar et 
al reported 99.7% accuracy with hybrid-optimized kNN, 
emphasizing the benefits of addressing data imbalance 
via oversampling, which was not explicitly applied here 
beyond initial partitioning.16 Meta-analyses provide a 
broader context. Krittanawong et al pooled AUCs for 
SVM in coronary artery disease prediction at 0.92 (95% 
CI: 0.81–0.97), closely mirroring our 0.9136, while 
boosting algorithms yielded 0.88 (95% CI: 0.84–0.91).6 A 
more recent meta-analysis by Liu et al on electronic health 
record-based models found random forest and deep 
learning pooled AUCs of 0.865 (95% confidence interval 
[CI]: 0.812–0.917) and 0.847 (95% CI: 0.766–0.927), 
respectively, outperforming conventional scores, such 
as QRISK3 (AUC: 0.765; 95% CI: 0.734–0.796).4 These 
syntheses indicate that while our models’ performance 
is robust within the constraints of traditional classifiers, 

Figure 2. ROC Curves of All the Classification Algorithms. Note. ROC: 
Receiver operating characteristic; AUC: The area under the receiver operating 
characteristic curve; SVM: Support vector machine; kNN: k-nearest neighbors
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incorporating deep learning or ensemble methods—such 
as those in the study by Cai et al, achieving AUCs up to 
0.99 via convolutional neural networks—could elevate 
accuracy, particularly in larger or multimodal datasets.5

Discrepancies in performance across studies may 
arise from methodological differences, including dataset 
variations (e.g., UCI’s 270 records vs. larger cohorts 
like UK Biobank), feature engineering (e.g., our equal-
width binning vs. advanced selection in hybrid models), 
and evaluation strategies.2 For instance, Abdeldjouad 
et al reported KNN accuracies of 90.8% on UCI data, 
potentially due to more aggressive outlier removal or 
cross-validation folds.21 Our focus on interpretability via 
CART complements these findings, as tree-based models 
facilitate clinical adoption by elucidating risk pathways, 
akin to the findings of Han et al, where DTs identified 
similar key predictors, including chest pain and vessel 
occlusion.15 Nonetheless, the limitations of the UCI 
dataset (i.e., small size and potential selection bias) may 
underestimate real-world generalizability, as evidenced by 
meta-analytic heterogeneity (I² > 99% in the study by Liu 
et al4), underscoring the need for external validation.

The strengths of this study include its comprehensive 
metric evaluation (accuracy, sensitivity, specificity, 
precision, recall, F-measure, and AUC), dual validation 
approaches, and emphasis on interpretability, addressing 
gaps in prior single-algorithm studies. On the other 
hand, the limitations encompass reliance on a single 
dataset, absence of advanced ensembles or deep learning, 
and potential overfitting in tree models despite depth 
constraints. Future research should validate these 
models on diverse, prospective cohorts (e.g., integrating 
electronic health records or imaging data) and explore 
hybrid approaches (e.g., SVM-NB ensembles) in order to 
mitigate biases.8 Additionally, incorporating explainable 
artificial intelligence techniques (e.g., SHapley Additive 
exPlanations) can enhance rule extraction, fostering 
integration into clinical decision support systems.22

In summary, this comparative analysis affirmed SVM 
and NB as reliable tools for CVD prediction, with CART 
adding interpretive value. By benchmarking against 
contemporary literature, our findings contribute to the 
evolving landscape of ML in cardiology, advocating 
for tailored, multi-model evaluations to optimize early 
detection and resource allocation in healthcare.

Conclusion
Our findings demonstrated that data mining algorithms 
generally yield more accurate predictive models for CVD 
than traditional statistical methods. Among the evaluated 
techniques, SVM and NB exhibited superior accuracy and 
reliability, whereas DT models, utilizing fewer variables, 
provided simpler and more interpretable models. 
Comparative analysis with previous studies suggests that 
the performance of predictive algorithms varies according 
to the type and volume of data, the nature of variables, 
and the characteristics of the target population. Therefore, 

it is recommended that the performance of multiple 
algorithms be evaluated in each specific context to identify 
the most suitable approach for developing predictive 
models. While it is not feasible to claim the creation of a 
model that can definitively predict CVD, appropriate data 
collection, rigorous preprocessing, and enhancement of 
data quality can lead to models with satisfactory predictive 
accuracy. Ultimately, this study highlights that employing 
predictive modeling and data mining techniques can offer 
a more precise understanding of CVD prevalence, thereby 
supporting evidence-based planning, optimal resource 
allocation, and the delivery of higher-quality healthcare 
services to the population.
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