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Abstract \
Background: Cardiovascular diseases (CVDs) remain a leading cause of mortality, demanding timely and accurate diagnosis.
Traditional clinical assessments are often prone to errors, highlighting the need for predictive models that leverage large-scale
clinical data, including data mining techniques that can extract data from complex medical datasets. This study comparatively
analyzed classification-based data mining algorithms for predicting CVDs and evaluating their performance across multiple metrics
to identify the most effective predictive model for clinical applications.

Methods: The UCI Heart Disease dataset (270 records with 14 clinical attributes) was used. Data preprocessing involved cleaning,
normalization, discretization, and partitioning into training (70%) and testing (30%) sets. NB, ANN, kNN, SVM, and CART
algorithms were implemented using Orange. Model performance was evaluated by accuracy, sensitivity, specificity, precision,
recall, F-measure, and AUC using hold-out validation and 5-fold cross-validation. Feature importance and decision rules were
extracted from tree-based models for interpretability.

Results: SVM and NB achieved the highest overall predictive performance (accuracy: 84.44%, sensitivity: 86.00%, specificity:
82.50%, AUC: 0.9136; accuracy: 84.07%, AUC: 0.9133). ANN and KNN demonstrated moderate predictive ability, while CART
(accuracy: 78.52%) provided interpretable decision rules. Decision tree (DT) analysis identified thalassemia status, chest pain
type, and number of major vessels colored as the most influential attributes. Several clinically interpretable rules were extracted,
offering potential guidance for risk assessment. Statistical comparisons indicated no significant difference between SVM and NB
performance, suggesting both models provide reliable predictions.

Conclusion: SVM and NB offer robust predictive capabilities for CVD, outperforming traditional statistical approaches. DT models
provide additional interpretability, facilitating clinical understanding and application. These findings underscore the importance
of evaluating multiple predictive models in context-specific datasets to identify optimal approaches for risk assessment, resource
allocation, and quality of care improvement, thereby enhancing early detection and supporting evidence-based CVD management.
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Background
Providing high-quality care while maintaining cost-
effectiveness is one of the major challenges facing
healthcare organizations, including hospitals and medical
centers. High-quality care relies on accurate diagnosis and
effective treatment, as inappropriate clinical decisions
may lead to catastrophic and unacceptable consequences.'
Cardiovascular diseases (CVDs) represent a critical
domain where timely and precise diagnosis is essential,
given their high mortality rates worldwide. The term CVD
encompasses a wide spectrum of disorders that affect the
heart and blood vessels, influencing the circulation and
pumping function of the heart.®

According to the World Health Organization, in 2012,
nearly 17 million deaths worldwide were attributed to heart
attack and stroke, positioning CVDs as the leading cause
of adult mortality.® Reports further indicate that CVDs
account for almost half of all deaths in developed nations
and remain a major cause of mortality in developing

countries, including Iran. According to official statistics
from the Iranian Ministry of Health, over 40% of deaths
in the country are due to CVDs.>*” The diagnostic process
for CVDs is highly complex and requires exceptional
accuracy; however, traditional clinical assessments,
typically based on physicians’ expertise and experience,
are prone to errors.® Despite technological advances in
recent decades that have facilitated diagnosis, controlling
CVDs continues to be a primary priority for healthcare
systems worldwide.’

Data mining has emerged as a promising approach to
extractvaluable insights from large-scale medical databases
that often remain underutilized. The applications of this
process in healthcare include supporting decision-making
in treatment selection, clinical guideline development,
resource allocation, and evaluating therapeutic outcomes
1. Broadly, data mining techniques can be categorized into
descriptive and predictive types. While descriptive mining
identifies patterns and associations from past activities,
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predictive mining utilizes historical data to forecast future
outcomes.'™"? The efficiency of these algorithms depends
on several factors, such as the availability of required
variables, the size and quality of datasets, and the accuracy
of data.

Although conventional diagnostic markers for CVDs
include symptoms, electrocardiograms, and enzymatic
indicators, incorporating additional patient attributes
(e.g., age, gender, family history, and heart rate) can
substantially enhance diagnostic accuracy. Numerous
studies have applied data mining techniques to
cardiovascular datasets, employing a number of models,
such as decision trees (DTs), association rule mining,
Bayesian networks, and artificial neural networks (ANNs).
For instance, DT models have been used to identify risk
factor relationships," while DTs and association rules have
evaluated critical risk predictors.'* > Moreover, Bayesian
networks have been applied to assess survival predictors
in cardiac patients.'

However, most of these studies have focused on
applying a single data mining algorithm or utilized limited
evaluation criteria, making it difficult to determine the
most reliable model for CVD prediction. Furthermore,
there is limited evidence comparing the performance of
multiple classification algorithms on large, real-world
cardiovascular datasets using comprehensive performance
metrics. This gap highlights the need for systematic
evaluation to identify the most effective predictive models
for clinical use.

Accurate prediction not only plays a vital role in
guiding treatment strategies but also supports optimal
resource allocation in hospitals, ultimately improving
the quality of care delivery. Therefore, the present study
aims to perform a comparative analysis of classification-
based data mining algorithms for predicting CVDs by
evaluating their performance across key metrics such
as accuracy, sensitivity, specificity, precision, recall, and
F-measure in order to identify the most effective model
for CVD prediction.

Methods

Dataset

The method adopted in this study for predicting CVDs
consists of several steps: dataset selection, data preparation
and normalization, data mining and classification, model
evaluation, and knowledge extraction.

The publicly available heart disease dataset from the
University of California, Irvine (UCI) Machine Learning
(ML) Repository was employed for this purpose. This
dataset contains multiple clinical attributes that are
highly relevant for identifying patterns associated with
cardiovascular disorders. After handling missing values
and removing outliers, a total of 270 complete records were
retained for analysis. The dataset includes 14 attributes,
where the 14th attribute (heartdisease) indicates the
presence (positive cases) or absence (negative cases) of
CVD, which was used as the target class.

The dataset is balanced, consisting of 120 negative cases
(absence of the disease) and 150 positive cases (presence
of the disease), ensuring that model training is not biased
toward any class. The attributes contain both numerical
(continuous) and categorical (discrete) variables. Five
attributes were continuous, and the remaining attributes
were discrete. To enhance classification performance and
simplify analysis, all continuous variables were discretized
using equal-width binning, converting them into discrete
intervals. The discretization thresholds were determined
based on standard clinical reference ranges and data
distribution percentiles. For instance, age was grouped
into four categories (29-39, 40-49, 50-59, and 60-77
years). In addition, resting blood pressure was classified
as normal (<120 mm Hg ), elevated (120-129 mm Hg
), stage 1 hypertension (130-139 mm Hg ), and stage 2
hypertension (=140 mm Hg ). Further, cholesterol levels
were classified according to established clinical cutoffs
(<200 mg/dL, 200-239 mg/dL, and 2240 mg/dL). Other
continuous variables, such as maximum heart rate and
ST depression (old peak), were discretized using quartile-
based thresholds derived from the study cohort.

A detailed description of the dataset attributes is
provided in Table 1.

Data Preprocessing

The preprocessing phase involved three main steps:

o Data cleaning: Missing and inconsistent records were
removed.

o Normalization and discretization: Continuous features
were transformed into discrete intervals using equal-
width binning to enhance model interpretability and
improve classification performance.

Table 1. Description of the Attributes in the UCI Heart Disease Dataset

No. ?[t)tar::::tename) Description

1 age Age of the patient (in years)
2 sex Gender of the patient

3 cp Chest pain type

4 restbp Resting blood pressure

5 chol Serum cholesterol level

6 fbs Fasting blood sugar

7 restecg Resting electrocardiographic results

8 maxhrate Maximum heart rate achieved

9 exang Exercise-induced angina

10  oldpeak ST depression induced by exercise relative to rest
11 slope Slope of the peak exercise ST segment

Number of major vessels (0-3) colored by

12 ncolored
fluoroscopy

Thalassemia status: 3 =normal; 6 =fixed defect;

13 thal 7 =reversible defect

heartdi . . .
14 (Cei‘zgs) 1sease Diagnosis of heart disease (presence or absence)

Note. UCI: The University of California, Irvine.
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o Partitioning: The dataset was divided into training
and testing subsets with a 70:30 ratio, resulting in 189
samples for training and 81 samples for testing.

Classification Algorithms

The experiments were conducted using Orange (version

2.7.8), an open-source data mining and ML software that

provides a wide range of tools for classification, regression,

and clustering. The following classification-based data

mining algorithms were implemented and compared, with

their main parameters explicitly set for reproducibility:

1. Naive Bayes (NB): Default prior probabilities and
Gaussian likelihood for continuous features.

2. ANN: One hidden layer with 10 neurons, learning
rate=0.01, and activation function = sigmoid.

3. k-Nearest neighbors (kNNs): k=5, Euclidean distance
metric.

4.  Support vector machine (SVM): Radial basis function
kernel, C=1, and gamma=0.1.

5. Classification Tree (CART): Gini impurity criterion,
ID3 Algorithm, and maximum depth=5.

The primary objective of classification was to predict
whether a patient has CVD (positive class) or not
(negative class).

Model Evaluation

Two evaluation strategies were applied to ensure

robustness:

«  Hold-out validation: Using the 70:30 training-testing
split described above.

o k-Fold cross-validation: The dataset was randomly
partitioned into k=5 equal subsets. In each iteration,
one subset was used for testing, while the remaining
four subsets were employed for training. The process
was repeated 5 times until every subset had served
as a test set once, and the final performance was
obtained by averaging the results.

The following evaluation metrics were derived from
the confusion matrix to comprehensively assess model
performance:

Accuracy=(TP+TN) / (TP + TN +FP+FN)
Sensitivity (Recall) =TP / (TP + FN)

Speciticity=TN / (TN + FP)

Table 2. Performance Metrics of Classification Algorithms

Precision=TP / (TP + FP)
F-measure =2 x (Precision x Recall) / (Precision + Recall)

where TP, TN, FP, and EN represent true positives, true
negatives, false positives, and false negatives, respectively.

Knowledge Extraction

Following model evaluation, feature importance and
decision rules were analyzed (particularly from tree-
based models) to identify the most influential clinical
attributes contributing to CVD prediction. This step
provides insights for potential clinical interpretation and
knowledge discovery.

Results

In total, 270 records were analyzed in the present study,
comprising 120 negative cases (absence of CVDs) and
150 positive cases (presence of CVDs). The age of the
participants ranged from 29 to 77 years, with a mean age
of 54.43 years. Of the total sample, 87 individuals (32.2%)
were female, and 183 individuals (67.8%) were male. The
dataset included 14 clinical attributes relevant to CVD
prediction, encompassing both continuous and categorical
variables, which were all preprocessed and discretized to
facilitate classification.

Classification Performance

Five widely used classification-based data mining
algorithms—NB, ANN, kNN, SVM, and CART—were
implemented to predict the presence of CVDs. The
models were evaluated using multiple performance
metrics, including accuracy, sensitivity, specificity,
precision, recall, F-measure, and area under the receiver
operating characteristic curve (AUC). Table 2 summarizes
the performance of each algorithm.

The results indicated that SVM achieved the highest
overall performance, slightly surpassing NB, with an
accuracy of 84.44%, a sensitivity of 86.00%, a specificity
of 82.50%, and an AUC of 0.9136. In addition, NB
demonstrated comparable performance, with an accuracy
of 84.07% and an AUC of 0.9133. Moreover, ANN and
kNN exhibited moderate predictive ability, while the
classification tree, though slightly lower in accuracy
(78.52%), provided interpretable decision rules and a
simplified model structure.

Although SVM achieved a slightly higher accuracy
(84.44%) compared to NB (84.07%) and a marginally

Algorithm Accuracy Sensitivity Specificity AUC F-measure Precision Recall
Classification tree 0.7852 0.8267 0.7333 0.8101 0.8105 0.7949 0.8267
Naive bayes 0.8407 0.8467 0.8333 0.9133 0.8552 0.8639 0.8467
SVM 0.8444 0.8600 0.8250 0.9136 0.8600 0.8600 0.8600
Neural network 0.8074 0.8267 0.7833 0.9058 0.8267 0.8267 0.8267
kNN 0.7963 0.8400 0.7417 0.8831 0.8208 0.8025 0.8400

Note. AUC: The area under the receiver operating characteristic curve; SVM: Support vector machine; kNN: k-nearest neighbors.
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higher AUC (0.9136 vs. 0.9133), the differences between
the two classifiers were minimal. To assess whether these
differences were statistically significant, a McNemar’s
test was conducted for accuracy, and a DeLong test was
performed to compare AUC values. The results revealed
no statistically significant difference between SVM and
NB for either accuracy (P>0.05) or AUC (P>0.05),
suggesting that both classifiers display comparable
predictive performance for CVD in this dataset. These
findings highlight that, despite the numerical superiority
of SVM in some metrics, NB provides an equally effective
predictive model while offering simpler interpretability
and computational efficiency.

Decision Tree Analysis

To enhance interpretability, a DT was constructed using
the ID3 algorithm. This algorithm selects the attribute with
the highest information gain as the root node, iteratively
splitting nodes to construct the tree. Information gain,
gain ratio, and Gini index were calculated for each
attribute (Table 3).

The attribute “thal” (thalassemia status) was identified
as the root node due to its highest information gain,
followed by chest pain type (cp) and number of major
vessels colored (ncolored), among others. The final DT
consisted of five levels, 41 nodes, and 27 leaves, providing
a clear visual representation of attribute influence on
CVD prediction (Figure 1). This tree illustrates the
relative importance of clinical attributes in determining

the likelihood of disease and offers interpretable rules for
potential clinical application.

Based on the DT analysis, several clinical rules were
extracted to predict the risk of CVDs. These rules provide
clear guidance on how specific combinations of patient
characteristics and clinical measurements influence
the likelihood of disease. A summary of these extracted
clinical rules is presented in Table 4.

Receiver Operating Characteristic Curve Analysis
ROC curves were generated to compare the discriminatory

Table 3. Attribute Evaluation for Decision Tree Construction

Attribute Information gain Gain ratio Gini index
thal 0.2085 0.1712 0.0681
cp 0.1922 0.1115 0.0627
ncolored 0.1752 0.1120 0.0574
exang 0.1299 0.1420 0.0434
maxhrate 0.1151 0.0844 0.0359
oldpeak 0.1124 0.0748 0.0357
slope 0.1111 0.0864 0.0369
sex 0.0668 0.0737 0.0218
age 0.0564 0.0288 0.0190
restecg 0.0241 0.0228 0.0082
restbp 0.0160 0.0090 0.0054
chol 0.0152 0.0108 0.0051
fbs 0.0001 0.0003 0.0000

Table 4. Clinical Rules Extracted From the Decision Tree for Cardiovascular Disease Prediction

Rule Path Prediction

Interpretation

thal =negative — cp=typical angina —

sex=female — maxhrate<159 Negative for CVDs

Female patients with negative thalassemia status, experiencing typical angina, and with
maximum heart rate<159 are likely not to have CVDs.

thal =negative — cp=typical angina —

Male patients with negative thalassemia status, experiencing typical angina, and ST

2 sex=male — oldpeak>1.5 Positive for CVDs depression (oldpeak) greater than 1.5 are at high risk of CVDs.

3 thal =positive — cp=atypical angina Positive for CVDs Patleqts with positive thalassemia status, atypical angina, and exercise-induced angina are
— exang=yes very likely to have CVD.

4 thal =negative — cp=non-anginal pain Positive for CVDs Patients with negative thalassemia status, non-anginal chest pain, and very high cholesterol

— cholesterol >240

(>240 mg/dL) are at high risk of CVDs.

Figure 1. Decision Tree Constructed Using the ID3 Algorithm
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power of each classifier. Consistent with performance
metrics, SVM demonstrated the highest area under
the curve (AUC=0.9136), slightly outperforming NB
(AUC=0.9133), indicating superior predictive capability.
The DT, while slightly lower in AUC, provided the
advantage of interpretability, which is critical for clinical
decision support (Figure 2).

Discussion

The present study comparatively evaluated five
classification-based data mining algorithms—NB, ANN,
kNN, SVM, and CART—for predicting CVDs using the
UCI Heart Disease dataset. Our findings demonstrated that
SVM and NB exhibited the strongest overall performance,
achieving accuracies of 84.44% and 84.07%, respectively,
with corresponding AUC values of 0.9136 and 0.9133.
These models outperformed ANN (accuracy: 80.74%,
AUC: 0.9058), KNN (accuracy: 79.63%, AUC: 0.8831),
and CART (accuracy: 78.52%, AUC: 0.8101) in both
hold-out and 5-fold cross-validation settings. Statistical
analyses, including McNemar’s test for accuracy and
DeLong’s test for AUC, revealed no significant differences
between SVM and NB (P>0.05), indicating comparable
predictive efficacy. These results underscore the utility
of ML approaches in enhancing CVD risk stratification,
particularly through models that balance predictive power
with computational efficiency.

The superior performance of SVM and NB aligns with
their inherent strengths in handling high-dimensional,
nonlinear data typical of clinical datasets. The effectiveness
of SVM stems from its ability to maximize the margin
between classes via kernel functions (e.g., radial basis
function in this study), which facilitates robust separation
of CVD-positive and -negative cases despite potential class
imbalances or noise in attributes such as serum cholesterol
or resting blood pressure.”” Similarly, the probabilistic
framework of NB, assuming conditional independence
among features, enables efficient computation and
high sensitivity (86.00% for SVM and 84.67% for NB),

ROC Curves for Different Classification Algorithms
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Figure 2. ROC Curves of All the Classification Algorithms. Note. ROC:

Receiver operating characteristic; AUC: The area under the receiver operating

characteristic curve; SVM: Support vector machine; kNN: k-nearest neighbors

making it particularly suitable for early detection where
false negatives could have severe clinical consequences.'®
The moderate performance of ANN and kNN may be
attributed to their sensitivity to hyperparameters and
data scaling; for instance, the single hidden layer of ANN
with sigmoid activation might not capture complex
interactions as effectively as deeper architectures, while
the reliance of kNN on the Euclidean distance could be
influenced by outliers in continuous features, such as
the maximum heart rate.'” CART, although yielding the
lowest accuracy, offers valuable interpretability through
decision rules, which is crucial for clinical translation.?
The DT identified thalassemia status (thal), chest pain
type (cp), and number of major vessels colored by
fluoroscopy (ncolored) as the most influential attributes,
based on information gain (0.2085 for thal) and Gini
index rankings. These features reflect pathophysiological
mechanisms: Thalassemia defects impair myocardial
perfusion, atypical chest pain signals ischemic events,
and ncolored indicates coronary artery occlusion severity.
The extracted rules, such as “thal = positive > cp = atypical
angina > exang=yes, predicting positive CVD, provide
actionable insights into risk assessment, potentially
guiding targeted interventions, such as angiography or
lifestyle modifications.

Comparisons with prior literature reveal both
consistencies and variations in model performance,
highlighting the context-specific nature of ML applications
in CVD prediction. Using the same UCI dataset, our SVM
accuracy (84.44%) is comparable to the findings of the
study by Alsabhan and Alfadhly, demonstrating SVM
accuracies exceeding 85% with similar preprocessing steps,
including discretization and normalization.’> However,
more recent investigations employing advanced ensemble
or optimization techniques have achieved higher metrics.
For example, a hybrid framework by Teja and Rayalu
using optimizable KNN attained 95.04% accuracy and
0.99 AUC on the UCI dataset through correlation-based
feature selection and hyperparameter tuning, surpassing
our results, possibly due to their integration of genetic
algorithms for feature optimization."” Likewise, Kumar et
al reported 99.7% accuracy with hybrid-optimized kNN,
emphasizing the benefits of addressing data imbalance
via oversampling, which was not explicitly applied here
beyond initial partitioning.'® Meta-analyses provide a
broader context. Krittanawong et al pooled AUCs for
SVM in coronary artery disease prediction at 0.92 (95%
CI: 0.81-0.97), closely mirroring our 0.9136, while
boosting algorithms yielded 0.88 (95% CI: 0.84-0.91).6 A
more recent meta-analysis by Liu et al on electronic health
record-based models found random forest and deep
learning pooled AUCs of 0.865 (95% confidence interval
[CI]: 0.812-0.917) and 0.847 (95% CIL 0.766-0.927),
respectively, outperforming conventional scores, such
as QRISK3 (AUC: 0.765; 95% CI: 0.734-0.796).* These
syntheses indicate that while our models’ performance
is robust within the constraints of traditional classifiers,
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incorporating deep learning or ensemble methods—such
as those in the study by Cai et al, achieving AUCs up to
0.99 via convolutional neural networks—could elevate
accuracy, particularly in larger or multimodal datasets.®

Discrepancies in performance across studies may
arise from methodological differences, including dataset
variations (e.g., UCI's 270 records vs. larger cohorts
like UK Biobank), feature engineering (e.g., our equal-
width binning vs. advanced selection in hybrid models),
and evaluation strategies.” For instance, Abdeldjouad
et al reported KNN accuracies of 90.8% on UCI data,
potentially due to more aggressive outlier removal or
cross-validation folds.”’ Our focus on interpretability via
CART complements these findings, as tree-based models
facilitate clinical adoption by elucidating risk pathways,
akin to the findings of Han et al, where DTs identified
similar key predictors, including chest pain and vessel
occlusion.”” Nonetheless, the limitations of the UCI
dataset (i.e., small size and potential selection bias) may
underestimate real-world generalizability, as evidenced by
meta-analytic heterogeneity (I*>99% in the study by Liu
et al*), underscoring the need for external validation.

The strengths of this study include its comprehensive
metric evaluation (accuracy, sensitivity, specificity,
precision, recall, F-measure, and AUC), dual validation
approaches, and emphasis on interpretability, addressing
gaps in prior single-algorithm studies. On the other
hand, the limitations encompass reliance on a single
dataset, absence of advanced ensembles or deep learning,
and potential overfitting in tree models despite depth
constraints. Future research should validate these
models on diverse, prospective cohorts (e.g., integrating
electronic health records or imaging data) and explore
hybrid approaches (e.g., SVM-NB ensembles) in order to
mitigate biases.® Additionally, incorporating explainable
artificial intelligence techniques (e.g., SHapley Additive
exPlanations) can enhance rule extraction, fostering
integration into clinical decision support systems.*

In summary, this comparative analysis affirmed SVM
and NB as reliable tools for CVD prediction, with CART
adding interpretive value. By benchmarking against
contemporary literature, our findings contribute to the
evolving landscape of ML in cardiology, advocating
for tailored, multi-model evaluations to optimize early
detection and resource allocation in healthcare.

Conclusion

Our findings demonstrated that data mining algorithms
generally yield more accurate predictive models for CVD
than traditional statistical methods. Among the evaluated
techniques, SVM and NB exhibited superior accuracy and
reliability, whereas DT models, utilizing fewer variables,
provided simpler and more interpretable models.
Comparative analysis with previous studies suggests that
the performance of predictive algorithms varies according
to the type and volume of data, the nature of variables,
and the characteristics of the target population. Therefore,

it is recommended that the performance of multiple
algorithms be evaluated in each specific context to identify
the most suitable approach for developing predictive
models. While it is not feasible to claim the creation of a
model that can definitively predict CVD, appropriate data
collection, rigorous preprocessing, and enhancement of
data quality can lead to models with satisfactory predictive
accuracy. Ultimately, this study highlights that employing
predictive modeling and data mining techniques can offer
a more precise understanding of CVD prevalence, thereby
supporting evidence-based planning, optimal resource
allocation, and the delivery of higher-quality healthcare
services to the population.

Acknowledgements
The authors would like to express their sincere gratitude to all those
who assisted in this study.

Authors’ Contribution

Conceptualization: Sepideh Seyedi-Sahebari, Ali Farzaneh.
Data curation: Ali Farzaneh.

Formal analysis: Ali Farzaneh.

Funding acquisition: Sepideh Seyedi-Sahebari, Ali Farzaneh.
Investigation: Ali Farzaneh.

Methodology: Sepideh Seyedi-Sahebari.

Project administration: Sepideh Seyedi-Sahebari.

Resources: Ali Farzaneh.

Software: Sepideh Seyedi-Sahebari.

Supervision: Ali Farzaneh.

Validation: Sepideh Seyedi-Sahebari.

Visualization: Ali Farzaneh.

Writing—original draft: Sepideh Seyedi-Sahebari, Ali Farzaneh.
Writing-review & editing: Sepideh Seyedi-Sahebari, Ali Farzaneh.

Competing Interests
The authors declare that they have no competing interests.

Consent for Publication
Not applicable.

Data Availability Statement
The dataset supporting the conclusion of this article is included
within the article.

Ethical Approval
Not applicable.

Funding
This study was self-funded by the authors and received no external
financial support from any funding organization.

Intelligence Use Disclosure

The authors used Copilot for grammar correction and language
editing to improve manuscript readability. All Al-generated
language suggestions were reviewed and edited by the authors.

References

1. World Health Organization (WHO). Cardiovascular Diseases
(CVDs): Key Facts. Geneva: WHO; 2021.

2. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati
E, Baddour LM, et al. Global burden of cardiovascular diseases
and risk factors, 1990-2019: update from the GBD 2019 study.
J Am Coll Cardiol. 2020;76(25):2982-3021. doi: 10.1016/j.
jacc.2020.11.010.

3. Syed MG, Trucco E, Mookiah MR, Lang CC, McCrimmon R},

68 | Digital Health Trends Journal. 2025;1(1)


https://doi.org/10.1016/j.jacc.2020.11.010
https://doi.org/10.1016/j.jacc.2020.11.010

Seyedi-Sahebari and Farzaneh

Palmer CN, et al. Deep-learning prediction of cardiovascular
outcomes from routine retinal images in individuals with type
2 diabetes. Cardiovasc Diabetol. 2025;24(1):3. doi: 10.1186/
$12933-024-02564-w.

Liu T, Krentz A, Lu L, Curcin V. Machine learning based
prediction models for cardiovascular disease risk using
electronic health records data: systematic review and meta-
analysis. Eur Heart ] Digit Health. 2025;6(1):7-22. doi:
10.1093/ehjdh/ztae080.

Cai Y, Cai YQ, Tang LY, Wang YH, Gong M, Jing TC, et
al. Artificial intelligence in the risk prediction models of
cardiovascular disease and development of an independent
validation screening tool: a systematic review. BMC Med.
2024;22(1):56. doi: 10.1186/s12916-024-03273-7.
Krittanawong C, Virk HU, Bangalore S, Wang Z, Johnson KW,
Pinotti R, et al. Machine learning prediction in cardiovascular
diseases: a meta-analysis. Sci Rep. 2020;10(1):16057. doi:
10.1038/541598-020-72685-1.

Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N. Can machine-
learning improve cardiovascular risk prediction using routine
clinical data? PLoS One. 2017;12(4):e0174944. doi: 10.1371/
journal.pone.0174944.

Chicco D, Jurman G. Machine learning can predict survival of
patients with heart failure from serum creatinine and ejection
fraction alone. BMC Med Inform Decis Mak. 2020;20(1):16.
doi: 10.1186/s12911-020-1023-5.

Kanwar MK, Lohmueller LC, Kormos RL, Teuteberg JJ, Rogers
JG, Lindenfeld J, et al. A Bayesian model to predict survival
after left ventricular assist device implantation. JACC Heart
Fail. 2018;6(9):771-9. doi: 10.1016/}.jchf.2018.03.016.
Tylman W, Waszyrowski T, Napieralski A, Kaminski M,
Trafidto T, Kulesza Z, et al. Real-time prediction of acute
cardiovascular events using hardware-implemented Bayesian
networks. Comput Biol Med. 2016;69:245-53. doi: 10.1016/].
compbiomed.2015.08.015.

Poplin R, Varadarajan AV, Blumer K, LiuY, McConnell MV,
Corrado GS, et al. Prediction of cardiovascular risk factors from

20.

21.

22.

retinal fundus photographs via deep learning. Nat Biomed
Eng. 2018;2(3):158-64. doi: 10.1038/541551-018-0195-0.
Alsabhan W, Alfadhly A. Effectiveness of machine learning
models in diagnosis of heart disease: a comparative study. Sci
Rep. 2025;15(1):24568. doi: 10.1038/541598-025-09423-y.
Teja MD, Rayalu GM. Optimizing heart disease diagnosis with
advanced machine learning models: a comparison of predictive
performance. BMC Cardiovasc Disord. 2025;25(1):212. doi:
10.1186/512872-025-04627-6.

Li G, Wang H, Zhang M, Tupin S, Qiao A, LiuY, et al. Prediction
of 3D cardiovascular hemodynamics before and after
coronary artery bypass surgery via deep learning. Commun
Biol. 2021;4(1):99. doi: 10.1038/s42003-020-01638-1.

Han J, Pei ], Tong H. Data Mining: Concepts and Techniques.
Morgan Kaufmann Publishers; 2022.

Kumar R, Garg S, Kaur R, Johar MG, Singh S, Menon SV, et
al. A comprehensive review of machine learning for heart
disease prediction: challenges, trends, ethical considerations,
and future directions. Front Artif Intell. 2025;8:1583459. doi:
10.3389/frai.2025.1583459.

Vapnik V. The Nature of Statistical Learning Theory. Springer
Science & Business Media; 2013.

Murty MN, Devi VS. Introduction to Pattern Recognition and
Machine Learning. World Scientific; 2015.

Goodfellow I, BengioY, Courville A, Bengio Y. Deep Learning.
Cambridge: MIT Press; 2016.

Braiek HB, Khomh F. On testing machine learning
programs. J Syst Softw. 2020;164:110542. doi: 10.1016/j.
j55.2020.110542.

Abdeldjouad FZ, Brahami M, Matta N. A hybrid approach
for heart disease diagnosis and prediction using machine
learning techniques. In: International Conference on Smart
Homes and Health Telematics. Cham: Springer International
Publishing; 2020.

Lundberg SM, Lee SI. A unified approach to interpreting model
predictions. Adv Neural Inf Process Syst. 2017;30:1-10.

Digital Health Trends Journal. 2025;1(1) | 69


https://doi.org/10.1186/s12933-024-02564-w
https://doi.org/10.1186/s12933-024-02564-w
https://doi.org/10.1093/ehjdh/ztae080
https://doi.org/10.1038/s41598-020-72685-1
https://doi.org/10.1371/journal.pone.0174944
https://doi.org/10.1371/journal.pone.0174944
https://doi.org/10.1186/s12911-020-1023-5
https://doi.org/10.1016/j.jchf.2018.03.016
https://doi.org/10.1016/j.compbiomed.2015.08.015
https://doi.org/10.1016/j.compbiomed.2015.08.015
https://doi.org/10.1038/s41551-018-0195-0
https://doi.org/10.1038/s41598-025-09423-y
https://doi.org/10.1186/s12872-025-04627-6
https://doi.org/10.1038/s42003-020-01638-1
https://doi.org/10.3389/frai.2025.1583459
https://doi.org/10.1016/j.jss.2020.110542
https://doi.org/10.1016/j.jss.2020.110542

