
Background 
Neural networks (NNs) are computational models 
inspired by the structure and function of the human 
brain and consist of interconnected nodes referred to 
as neurons. These networks are organized into an input 
layer, one or more hidden layers, and an output layer.1-3 
Each connection between neurons is associated with a 
weight parameter that determines the strength of the 
transmitted signal. These weights are adjusted by iterative 
training using learning algorithms, enabling the network 
to capture complex, non-linear relationships between 
inputs and outputs.4,5 In multi-layer architectures, neurons 
are connected in a manner that allows hierarchical 

representation learning, similar in concept to biological 
neural processing.6

A key advantage of NNs is their adaptability to changing 
inputs without requiring the explicit modification of 
the output structure.7 Unlike traditional algorithmic 
approaches, NNs can address problems for which no 
explicit solution is known or where the solution space 
is highly complex. They excel in different tasks, such 
as pattern recognition, prediction, and classification.8 
Additional benefits include distributed data storage, 
tolerance to incomplete or noisy inputs, fault tolerance, 
scalability, and parallel processing capabilities.9-11 
Originally developed within the field of artificial 
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Abstract
Background: Neural networks (NNs) are increasingly applied for 
various healthcare practices. Their performance, however, depends 
on large datasets often unavailable in clinical contexts, necessitating 
innovative strategies for enabling NNs to function effectively with 
small or limited datasets. Thus, this study evaluated evidence on NN 
applications in healthcare with a focus on strategies for handling 
data scarcity.
Methods: PubMed, Scopus, Web of Science, Embase, and IEEE Xplore 
databases and Google Scholar were searched for related studies. 
Data were extracted on clinical domains, model architecture, dataset 
characteristics, limited data strategies, and performance metrics and 
synthesized into thematic categories.
Results: NNs were applied in radiology, pathology, cardiology, 
neurology, oncology, genomics, clinical natural language processing, 
decision support, and remote monitoring. Data scarcity was 
mitigated through data-centric and model-centric approaches and 
advanced paradigms. Imaging-focused applications heavily relied on augmentation and transfer learning, whereas text- and tabular-
based tasks leveraged weak supervision and contrastive pretraining. Multimodal integration, combining imaging, genomics, and 
electronic health records (EHRs), emerged as a powerful strategy to overcome single-modality data constraints. Despite promising 
performance gains, external validation and generalizability remain limited across populations.
Conclusion: NNs demonstrate strong potential in healthcare, even when constrained by small datasets, provided that specialized 
strategies are employed. Transfer learning, data augmentation, generative modeling, multimodal integration, and meta-learning 
substantially enhance model performance and clinical applicability. However, challenges of reproducibility, bias, and scalability 
persist. Future research should prioritize federated learning, harmonized benchmarking, and explainability to ensure safe, equitable, 
and clinically trustworthy NN implementation in data-limited healthcare settings.
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intelligence, NNs have rapidly gained traction across 
diverse application domains, including finance, business 
forecasting, manufacturing, and predictive maintenance.12

In healthcare, NNs have demonstrated substantial utility 
in various areas, such as medical image analysis, disease 
diagnosis, outcome prediction, and clinical decision 
support.13 By leveraging machine learning, healthcare 
organizations can enhance diagnostic accuracy (ACC), 
improve treatment planning, and optimize resource 
utilization, often at reduced cost.14 Moreover, NNs offer 
a powerful framework for modeling and interpreting 
complex clinical datasets, facilitating the discovery of 
patterns and relationships that may not be apparent 
through traditional statistical methods.15 This potential 
has fueled growing interest in artificial intelligence for 
addressing multifaceted challenges in medicine and life 
sciences.16

However, a significant limitation in applying NNs to 
healthcare is the requirement for large training datasets 
to achieve robust performance. As model complexity 
increases, so does the volume of data needed for effective 
learning.17 While many recent advances in deep learning 
have been driven by the availability of massive datasets, 
such resources are rarely available in health sciences due 
to privacy constraints, high data acquisition costs, and 
variability in data collection methods.18,19 Consequently, 
learning efficiency may decline substantially in small-
sample scenarios, thereby reducing the applicability of 
conventional NN (CNN) approaches.

Given these constraints, there is a pressing need for 
innovative strategies that enable NNs to effectively operate 
with limited datasets, particularly in healthcare contexts 
where data scarcity is the norm. Therefore, this study 
addresses this gap by demonstrating how tailored NN 
architectures can be adapted to small-scale experimental 
or observational datasets in order to identify key causal 
factors influencing complex health-related outcomes.

Materials and Methods
This study employed a narrative review methodology 
to synthesize and critically evaluate the literature on 
NN applications in healthcare, with a specific focus on 
strategies for learning from limited datasets. A narrative 
review approach was selected due to its flexibility in 
addressing broad and complex research questions, 
allowing for an integrative assessment of diverse study 
designs and methodological perspectives.

Search Strategy
A comprehensive literature search was conducted in 
major scientific databases, including PubMed, Web of 
Science, Scopus, Embase, IEEE, and the Google Scholar 
search engine, to capture both medical and computational 
perspectives. The search covered publications from 
January 2000 to June 2025 to reflect contemporary 
developments in NN methodologies and their healthcare 

applications. Keywords and Boolean operators were 
combined as follows:
(“neural network” OR “artificial neural network” OR 
“deep learning” OR “perceptron” OR “radial basis 
network” OR “RBN” OR “machine learning” OR “ANN” 
OR “CNN” OR “convolutional neural network” OR 
“RNN” OR “recurrent neural network” OR “feedforward 
neural network” OR “FNN” OR “backpropagation 
network” OR “shallow neural network” OR “multilayer 
perceptron” OR “MLP” OR “self-organizing map” OR 
“SOM” OR “extreme learning machine” OR “ELM” 
OR “GAN” OR “generative adversarial network”) AND 
(“healthcare” OR “medical” OR “clinical” OR “medicine” 
OR “health sciences” OR “public health” OR “biomedical” 
OR “hospital” OR “patient care” OR “health service” OR 
“health” OR “care”) AND (“small dataset” OR “limited 
data” OR “low-resource” OR “data scarcity” OR “few-
shot” OR “one-shot” OR “low-data” OR “small sample” 
OR “data-constrained” OR “sparse data” OR “tiny 
dataset” OR “restricted dataset” OR “limited sample size”)
Additional sources were identified through the manual 
screening of reference lists from relevant articles and 
review papers.

Inclusion and Exclusion Criteria
Studies were included if they focused on the use of NNs 
in healthcare-related applications, reported methods, 
strategies, or adaptations for handling limited or 
small datasets, and were published in English in peer-
reviewed journals or reputable conference proceedings. 
On the other hand, the exclusion criteria included non-
healthcare applications, studies not involving NN models, 
and editorials, commentaries, and opinion pieces without 
methodological details.

Study Selection and Data Extraction
Two reviewers independently screened titles and abstracts 
for relevance, followed by full-text assessments. In 
addition, disagreements were resolved through discussion 
or consultation with a third reviewer. For each included 
study, data were extracted on application domain, NN 
architecture, dataset characteristics, strategies for limited 
data, and performance metrics and reported outcomes.

Data Synthesis
No formal meta-analysis was conducted, given the 
heterogeneity of study designs, applications, and 
outcome measures. Instead, the findings were narratively 
synthesized and organized into thematic categories, 
including general applications of NNs in healthcare 
(1), implications reported due to small datasets (2), and 
innovative strategies and methodological adaptations for 
low-data scenarios (3).

This thematic synthesis enabled the identification of 
prevailing trends, methodological gaps, and promising 
approaches for future research in applying NNs to healthcare 
problems with limited data availability.
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Results
In this narrative review, the required data were 
synthesized from diverse studies on the deployment 
of NNs in healthcare settings characterized by limited 
datasets. Table 1 provides a comprehensive summary 
of these applications, categorized by clinical domains. It 
delineates the primary clinical tasks, the predominant 
data modalities, the model architectures, innovative low-
data learning strategies implemented to mitigate scarcity 
and imbalance, key dataset characteristics (e.g., sample 
sizes, class imbalances, and noise levels), and performance 
metrics and outcomes. Notably, across medical imaging 
and oncology domains, several strategies (e.g., transfer 
learning, data augmentation, and self-supervised 
pretraining) consistently yielded high performance, with 
area under the curve (AUC) values exceeding 0.85 and 
improvements over traditional methods ranging from 5% 
to 15%. This tabular overview underscores the versatility 

of NNs in overcoming data limitations, highlighting 
their potential to enhance diagnostic ACC, prognostic 
precision, and operational efficiency in resource-
constrained environments.

The multifaceted implications of limited datasets 
on NN performance in healthcare contexts have been 
systematically outlined in this study. Figure 1 presents 
a hierarchical taxonomy that elucidates the primary 
challenges, including overfitting, difficulties in capturing 
complex patterns, poor generalization, and insufficient 
data variance, alongside a spectrum of innovative 
mitigation strategies. These strategies encompass 
advanced optimization techniques (e.g., stochastic 
gradient descent and Adam), transfer learning, problem 
reduction, learning with fewer parameters, loss function 
modifications, dataset balancing, data generation and 
augmentation, regularization approaches (e.g., dropout 
and L1/L2 penalties), and ensemble methods. This visual 

Table 1. Applications of Neural Networks Across Healthcare Domains: Key Clinical Tasks, Data Modalities, Architectures, Low-Data Strategies, Dataset 
Challenges, and Performance Outcomes

Domain Clinical tasks Data modalities
Model 
architectures

Low-data strategies
Dataset 
characteristics

Performance metrics 
and outcomes

Medical imaging 
(radiology and nuclear 
medicine)

Lesion detection, 
segmentation, 
classification, and 
response assessment

X-ray, CT, MRI, 
PET/CT, and 
ultrasound

CNNs, UNet, 
ResNet, ViTs, 
and CapsNets

Augmentation, 
transfer learning, 
pseudo-labeling, and 
ensemble methods

<1,000 samples/
class; class 
imbalance; noise 
(up to 25%)

Dice: 0.80–0.95; 
AUC: 0.87–0.98; ACC: 
>90%; outperforming 
traditional methods by 
5–15%

Digital pathology and 
cytology

Tumor grading, 
mitosis detection, 
subtype classification

Whole-slide 
images (WSIs)

Multi-instance 
CNNs and 
attention 
pooling

WSI tiling, stain 
normalization, and 
weak supervision

<1,000 samples; 
gigapixel images; 
stain heterogeneity

AUC: >0.90; F1-score: 
0.85–0.95; strong 
gains via GAN-based 
augmentation

Ophthalmology and 
dermatology

DR, glaucoma, AMD 
screening, and skin 
lesion classification

Fundus, OCT, 
and dermoscopic 
images

CNNs, ViTs, 
and CapsNets

Class-balanced 
sampling and domain 
adaptation

0–600 images; 
device 
heterogeneity

ACC: 85–95%; AUC: 
>0.85; sensitivity/
specificity >85%

Cardiology
Arrhythmia detection, 
heart failure risk, and 
ischemia prediction

ECG, 
echocardiography, 
and cardiac MRI

1D CNNs, 
CNN-RNN 
hybrids, and 
TCNs

Beat-level 
segmentation 
and contrastive 
pretraining

<1,000 samples; 
rare events

AUC: 0.85–0.93; 
reduced length of stay 
by ~2 days

Neurology and critical 
care

Seizure detection and 
ICU event prediction

EEG and ICU time 
series

Temporal 
CNNs and 
LSTM/GRU

Multitask learning 
and self-supervised 
pretraining

10–76,214 
patients; sparse 
data

Sensitivity/specificity 
>85%; robust 
prediction of rare 
events

Oncology outcomes and 
prognosis

Survival prediction 
and recurrence risk

EHR, imaging, and 
genomics

Multimodal 
NNs and 
GNNs

Feature selection 
and multimodal 
integration

58–265 subjects; 
high dimensionality

AUC: >0.90; improved 
prognostic accuracy; 
cost reduction

Genomics/proteomics 
and precision medicine

Variant effect 
prediction and drug 
response

Genomic/
proteomic profiles

Autoencoders, 
MLPs, and 
RBMs

Denoising and 
feature reduction

Small samples; 
p≫n

F1-score: 0.80–0.95; 
RMSE <1; ACC: 98.3% 
(independent test)

Clinical NLP and 
phenotyping

Diagnosis extraction 
and cohort 
identification

Clinical notes and 
reports

Text CNNs/
RNNs and 
Transformers

Prompt tuning 
and contrastive 
pretraining

Sparse text; note 
heterogeneity

AUC: >0.85; improved 
cohort identification 
accuracy

Operational and decision 
support

Triage, readmission, 
and forecasting

Tabular EHR and 
admin data

MLPs and 
LSTM/GRU

Cost-sensitive 
learning and 
ensembling

10–76,214 records; 
sparse

AUC: 0.85–0.90; 
reduced readmission 
rates

Remote monitoring and 
rehabilitation

Fall risk and therapy 
adherence

Wearables and 
spirometry

1D CNNs and 
RNN hybrids

Noise injection and 
domain adaptation

Temporal 
sparsity; device 
heterogeneity

ACC: >85%; 
early detection of 
exacerbations

Public health surveillance
Outbreak detection 
and risk mapping

EHRs, claims, and 
mobility data

Spatiotemporal 
NNs and 
temporal 
CNNs

Synthetic data 
generation and GANs

Aggregated 
data; regional 
heterogeneity

AUC: >0.85; 
enhanced population-
level predictions

Note. NN: Neural network; GNN: Graph neural network; EHR: Electronic health records; NLP: Natural language processing; CNN: Convolutional neural 
network; RNN: Recurrent neural network; CT: Computed tomography; MRI: Magnetic resonance imaging; PET: Positron emission tomography; DR: Diabetic 
retinopathy; AMD: Age-related macular degeneration; ICU: Intensive care unit; OCT: Optical coherence tomography; ECG: Electrocardiogram; EEG: 
Electroencephalogram; ViTs: Vision transformers; ResNet: Residual network; CapsNet: Capsule network; TCN: Temporal convolutional network; LSTM: Long 
short-term memory; GRU: Gated recurrent unit; MLP: Multilayer perceptron; RBM: Restricted Boltzmann machine; GAN: Generative adversarial network; Dice: 
Dice similarity coefficient; AUC: Area under the curve; ACC: Accuracy.
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framework underlines the interconnected nature of these 
issues and solutions, underscoring their relevance to 
enhancing model robustness in data-scarce environments. 
Each strategy is elaborated in detail in the subsequent 
sections of this review.

Implication of Limited Dataset
Lack of Generalization
Data Generation
1. Long Short-term Memory
In scenarios where the available dataset is small or 
temporally sparse, long short-term memory (LSTM) 
networks provide a robust strategy for modeling 
sequential dependencies and extracting meaningful 
representations from healthcare data. Contrary to 
conventional feed-forward NNs, LSTMs are designed 
to retain and selectively update long-range contextual 
information, thereby mitigating information loss in short 
sequences or under-sampled datasets. This property 
is particularly advantageous in clinical domains, such 
as cardiology (e.g., arrhythmia detection from an 
electrocardiogram), neurology (e.g., seizure prediction 
from an electroencephalogram), and intensive care 
monitoring, where the number of annotated cases 
may be limited, yet the temporal dimension contains 
latent predictive signals. In the context of low-data 
regimes, LSTMs are often coupled with complementary 

strategies (e.g., beat-level segmentation, temporal data 
augmentation, or contrastive pretraining) to enhance 
generalization. Empirical results from recent studies 
indicate that even with fewer than 1,000 patient records, 
LSTM-based architectures achieved AUC values ranging 
from 0.85 to 0.93, demonstrating competitive or superior 
performance compared to traditional machine learning 
models. Moreover, by efficiently leveraging temporal 
dependencies, LSTMs have been associated with clinically 
meaningful outcomes, such as the earlier detection of 
adverse events and reduced length of hospital stay.

2. Synthetic Minority Oversampling Technique
Synthetic minority oversampling technique (SMOTE) 
has been widely adopted to address the challenges of 
small and imbalanced clinical datasets. By generating 
the synthetic samples of minority classes through 
interpolation between nearest neighbors, SMOTE 
reduces class imbalance without simply duplicating 
existing records, thereby mitigating overfitting and 
enhancing generalization in NN training. In healthcare 
applications, such as disease classification, prognosis 
prediction, and rare-event detection, SMOTE has enabled 
models to learn more discriminative features even when 
the number of positive cases is scarce. Empirical studies 
have shown that SMOTE, when combined with deep 
architectures (e.g., CNNs or LSTMs), improves sensitivity 

Figure 1. Implications of Limited Datasets and Strategies for Their Management in Neural Network-Based Healthcare Applications.
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and F1-scores by 5–15% compared to training on raw 
imbalanced data. This strategy is particularly useable 
in clinical tasks where minority outcomes (e.g., early-
stage cancer, rare arrhythmias, or adverse drug events) 
are underrepresented, leading to more reliable decision 
support systems.

3. Generative Adversarial Networks
Generative adversarial networks (GANs) have emerged 
as a powerful strategy for addressing the scarcity of 
annotated healthcare data by synthesizing realistic, 
high-fidelity samples that augment existing datasets. 
Through adversarial training between a generator and 
discriminator, GANs capture complex data distributions 
and generate clinically plausible images or signals, thereby 
improving model robustness and mitigating overfitting in 
low-data regimes. In some domains (e.g., medical imaging, 
pathology, and genomics), GAN-based augmentation has 
been shown to enhance performance metrics, with gains 
of 5%–20% in sensitivity, F1-score, and AUC compared 
to models trained on original datasets alone. Moreover, 
GANs facilitate domain adaptation across heterogeneous 
sources (e.g., different scanners or staining protocols), 
further supporting generalization in real-world clinical 
applications.

4. Semi-Supervised Learning
Semi-supervised learning (SSL) leverages both labeled and 
unlabeled data to improve model performance in low-data 
settings, a common challenge in healthcare domains. By 
exploiting the underlying structure of unlabeled examples 
through techniques such as consistency regularization, 
pseudo-labeling, or graph-based propagation, SSL enables 
NNs to learn robust feature representations without 
requiring extensive annotations. This approach has 
proven effective in a number of tasks, including medical 
image classification, electronic health record (EHR) 
phenotyping, and rare-event prediction, where labeled 
samples are rare. Empirical results indicate that SSL can 
increase ACC, AUC, and F1-scores by 5–15% compared 
to fully supervised models trained solely on limited 
labeled data while also enhancing generalization across 
heterogeneous patient cohorts.

5. Unsupervised Feature Learning
Unsupervised feature learning involves extracting 
meaningful representations from unlabeled data. The 
primary objective is often to identify low-dimensional 
features that capture the intrinsic structure underlying 
high-dimensional input data. In addition, conducting 
feature learning in an unsupervised manner enables a 
form of semi-supervised learning, where features derived 
from an unlabeled dataset can subsequently enhance 
performance in supervised tasks using labeled data. Several 
methodologies have been developed to achieve effective 
unsupervised feature learning, which are discussed in the 
following sections.

5.1. K-Means Clustering: K-means clustering is an 
unsupervised technique that can enhance NN performance 
in low-data healthcare settings by identifying natural 
groupings within sparse or heterogeneous datasets. 
By partitioning data into clusters based on similarity, 
K-means facilitates the generation of pseudo-labels, the 
discovery of latent patient subgroups, and informed 
stratified sampling. This approach is particularly valuable 
in domains such as EHR-based phenotyping, rare disease 
detection, and patient risk stratification, where there 
are limited labeled data. Empirical studies demonstrate 
that integrating K-means clustering with deep learning 
pipelines can improve classification ACC, AUC, and F1-
score by 5%–10% while enabling models to generalize 
more effectively across underrepresented patient cohorts.

5.2. Principal Component Analysis: Principal component 
analysis (PCA) is a dimensionality reduction technique 
that is widely used to enhance NN performance 
in low-data healthcare settings. By transforming 
high-dimensional clinical data into a smaller set of 
uncorrelated principal components, PCA reduces noise, 
mitigates overfitting, and highlights the most informative 
features for model training. This approach is particularly 
invaluable in domains such as genomics, proteomics, and 
multimodal EHR analysis, where the number of features 
often exceeds that of samples. According to empirical 
studies, integrating PCA with deep learning architectures 
improves classification ACC, F1-score, and AUC, even 
when sample sizes are restricted, while also enabling more 
interpretable representations of patient subgroups and 
clinical patterns.

5.3. Local Linear Embedding:  Local linear embedding (LLE) 
is a nonlinear dimensionality reduction technique that 
preserves local neighborhood relationships within high-
dimensional clinical data, making it particularly useful 
in low-data healthcare scenarios. By projecting complex 
datasets onto a lower-dimensional manifold, LLE reduces 
noise and redundancy, facilitates feature extraction, and 
enhances the training efficiency of NNs when there is a 
limited number of labeled samples. This approach has 
been successfully applied in medical imaging, genomics, 
and EHR-based phenotyping, enabling models to capture 
intrinsic data structures and improve generalization. 
Moreover, empirical results indicate that combining LLE 
with deep learning architectures can increase classification 
ACC, AUC, and F1-scores, even when working with small 
patient cohorts, while also supporting the interpretable 
representations of latent clinical patterns.

5.4. Independent Component Analysis: ICA is a statistical 
technique that separates multivariate signals into 
statistically independent components, making it especially 
valuable for low-data healthcare applications. By 
disentangling the overlapping sources of variation in high-
dimensional datasets, ICA reduces redundancy, enhances 
signal-to-noise ratio, and facilitates the extraction of 
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meaningful features for NN training when there are limited 
labeled data. This approach has been effectively applied in 
a variety of domains (e.g., electroencephalogram-based 
seizure detection, functional magnetic resonance imaging 
analysis, and multi-omics data integration), enabling 
models to capture independent underlying patterns. 
Based on empirical studies, integrating ICA with deep 
learning architectures improves classification ACC, AUC, 
and F1-score, even with small sample sizes, in addition 
to supporting interpretable insights into latent clinical 
factors.

5.5. Unsupervised Dictionary Learning: Unsupervised 
dictionary learning (UDL) is a feature extraction 
technique that learns a set of basis elements (dictionary) 
from unlabeled data, enabling the sparse representation 
of high-dimensional clinical datasets. This approach is 
particularly efficient in low-data healthcare scenarios, 
as it reduces dimensionality, captures salient patterns, 
and mitigates overfitting in NN training. UDL has been 
successfully employed in medical imaging, genomics, and 
physiological signal analysis, where there are finite labeled 
samples. Empirical evidence shows that integrating 
UDL with deep learning architectures enhances model 
performance and classification ACC, AUC, and F1-score 
while also providing interpretable representations of 
underlying clinical structures.

6. Data Doubling, Holdout Data, and Data Creation
In low-data healthcare scenarios, strategies such as 
data doubling, holdout partitioning, and synthetic 
data creation provide effective solutions to improve 
NN performance. Data doubling involves replicating 
or augmenting existing samples to increase dataset 
size, while holdout data ensures reliable evaluation by 
reserving a subset for validation, preventing overfitting. 
On the other hand, synthetic data creation generates new 
samples that mimic the statistical properties of real data, 
using techniques such as interpolation, bootstrapping, 
or generative models. These combined strategies 
enhance model generalization, mitigate class imbalance, 
and support robust training in medical imaging, EHR 
analysis, and physiological signal modeling. Empirical 
studies confirm that integrating these approaches with 
deep learning architectures improves ACC, AUC, and 
F1-score, even when the original dataset is limited, while 
maintaining clinical relevance and interpretability.

7. Algorithmic Expansion of Training Data
Algorithmic expansion of the training data is a strategy 
to address scarcity in clinical datasets by generating 
additional informative samples through computational 
methods, including data augmentation (e.g., rotations, 
scaling, and noise injection), synthetic sample 
generation via generative models, and interpolation-
based approaches. By enriching the dataset, this strategy 
reduces overfitting, enhances NN generalization, and 

captures latent patterns in both imaging and tabular 
healthcare data. Empirical evidence demonstrates that 
models trained with algorithmically expanded datasets 
achieve higher ACC, AUC, and F1-scores, even when 
original sample sizes are limited, and improve robustness 
in diverse clinical tasks (e.g., medical image classification, 
EHR phenotyping, and physiological signal prediction).

Data Augmentation
Data augmentation is a widely used strategy to enhance 
NN performance in low-data healthcare settings by 
artificially increasing the diversity and size of training 
datasets. In medical imaging, augmentation techniques 
(e.g., rotations, flips, scaling, intensity shifts, and elastic 
transformations) generate new plausible samples without 
additional labeling effort. In tabular or signal-based clinical 
data, methods like noise injection, jittering, and time-
series warping provide similar benefits. By introducing 
variability, data augmentation reduces overfitting, 
improves model generalization, and enables NNs to 
learn more robust representations from limited datasets. 
Empirical studies have demonstrated that applying data 
augmentation in radiology, pathology, ophthalmology, 
and wearable sensor analysis enhances ACC, AUC, and 
F1-scores by 5–15%, even when the original sample size 
is small.

Regularization
1. Convolutional Network With Dropout
Convolutional NNs (CNNs) equipped with dropout 
provide an effective strategy for mitigating overfitting 
in low-data healthcare scenarios. Dropout randomly 
deactivates a subset of neurons during training, which 
forces the network to learn redundant and robust feature 
representations, thereby enhancing generalization from 
limited samples. This approach is particularly beneficial 
in medical imaging tasks (e.g., lesion detection, tumor 
classification, and retinal disease screening), where 
labeled datasets are often small. Empirical studies uncover 
that CNNs with dropout achieve improved ACC, AUC, 
and F1-scores compared to standard CNNs while keeping 
performance stable across heterogeneous patient cohorts 
and imaging devices.

2. Ridge
Ridge regularization (L2 penalty) is an extensively used 
technique to improve NN generalization in low-data 
healthcare settings. By penalizing large weight coefficients, 
Ridge regularization constraints model complexity, 
reduces overfitting, and encourages the network to 
learn more stable and robust feature representations 
from limited samples. This approach is particularly 
valuable in EHR-based prognosis prediction, medical 
imaging classification, and physiological signal analysis, 
where the number of features is often more than that of 
samples. Empirical studies represent that integrating 
Ridge regularization into NN architectures can enhance 
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ACC, AUC, and F1-scores while preserving consistent 
performance across heterogeneous patient cohorts.

3. Lasso Regularization
Lasso regularization (L1 penalty) is an effective method 
for enhancing NN performance in low-data healthcare 
settings by promoting sparsity in model weights. By 
driving less informative feature coefficients toward zero, 
Lasso facilitates automatic feature selection, reduces 
overfitting, and enables the network to focus on the most 
predictive signals in limited datasets. This approach is 
particularly useful in genomics, proteomics, EHR-based 
phenotyping, and medical imaging, where the number 
of features often exceeds that of samples. According 
to empirical evidence, integrating Lasso regularization 
improves ACC, AUC, and F1-scores while also providing 
more interpretable models for clinical decision support.

4. Elastic Net
Elastic Net regularization combines L1 (Lasso) and L2 
(Ridge) penalties to enhance NN performance in low-
data healthcare settings. By simultaneously promoting 
sparsity and controlling large weight magnitudes, Elastic 
Net mitigates overfitting, selects informative features, 
and stabilizes model training when there is a restricted 
number of labeled samples. This approach is particularly 
successful in domains with high-dimensional clinical 
data (e.g., genomics, multi-omics integration, EHR-based 
prognosis prediction, and medical imaging classification). 
Based on previous empirical studies, incorporating Elastic 
Net regularization improves ACC, AUC, and F1-scores 
while providing more interpretable and robust models 
that are capable of generalizing across heterogeneous 
patient populations.

Ensembling
1. Data Level Approach: Resampling Techniques
1.1. Random Under-Sampling: RUS is a technique utilized 
to address class imbalance in low-data healthcare datasets 
by selectively reducing the number of samples from the 
majority class. This approach helps NNs concentrate 
on minority class patterns, mitigating bias toward 
overrepresented outcomes and improving the detection 
of rare events. RUS is particularly relevant in different 
clinical tasks (e.g., rare disease classification, adverse 
event prediction, and early-stage condition detection), 
where minority outcomes are underrepresented. 
Empirical research demonstrates that integrating RUS 
with deep learning models enhances F1-score, sensitivity, 
and AUC while maintaining acceptable overall ACC, thus 
improving predictive performance and clinical utility in 
limited and imbalanced datasets.

1.2. Random Over-Sampling: ROS is a technique designed 
to address class imbalance in low-data healthcare 
datasets by duplicating samples from the minority class. 
This strategy ensures that NNs are exposed to sufficient 

examples of rare or underrepresented outcomes, reducing 
bias toward the majority class and enhancing the detection 
of clinically important events. ROS is particularly valuable 
in early disease detection, adverse event prediction, and 
rare condition classification, where positive cases are 
scarce. Empirical studies indicate that integrating ROS 
with deep learning models improves AUC, sensitivity, 
and F1-score, while preserving robust overall ACC, 
thereby enhancing predictive performance and clinical 
applicability in small and imbalanced datasets.

1.3. Cluster-Based Over Sampling: CBOS is an advanced 
method to focus on class imbalance in low-data 
healthcare settings by generating synthetic minority-class 
samples based on clustered structures within the data. 
Unlike simple random oversampling, CBOS preserves the 
intrinsic distribution of minority-class samples by creating 
new data points within cluster boundaries, thereby 
reducing the risk of overfitting while enhancing model 
generalization. This approach is particularly practical in 
rare disease detection, adverse event prediction, and early-
stage condition classification, where minority outcomes 
are underrepresented. Empirical evidence reveals that 
integrating CBOS with NNs improves sensitivity, AUC, 
and F1-score, while maintaining robust overall ACC, 
thereby improving clinical applicability and predictive 
performance in small and heterogeneous datasets.

1.4. Informed Oversampling: Synthetic Minority Over-
Sampling Technique: SMOTE is an informed oversampling 
method developed to handle class imbalance in low-data 
healthcare datasets. Contrary to the simple duplication of 
minority samples, SMOTE generates synthetic instances 
by interpolating between existing minority-class 
examples, thereby preserving the intrinsic feature space 
distribution while reducing overfitting. This approach is 
particularly valuable in a variety of clinical tasks (e.g., rare 
disease detection, early-stage cancer classification, adverse 
event prediction, and other low-prevalence conditions). 
According to empirical investigations, combining SMOTE 
with NNs improves F1-score, sensitivity, and AUC while 
maintaining high overall ACC, thereby enhancing clinical 
utility and predictive performance in small, imbalanced 
datasets.

1.5. Modified Synthetic Minority Oversampling Technique: 
The modified SMOTE is an advanced variant of SMOTE 
designed to improve minority class representation in 
low-data healthcare datasets while minimizing potential 
noise and overfitting. Unlike conventional SMOTE, the 
modified version incorporates different strategies (e.g., 
adaptive neighbor selection, noise filtering, or local 
density estimation) to generate synthetic samples that 
more accurately reflect the minority class distribution. 
This approach is particularly useful in clinical applications 
involving adverse event prediction, rare disease detection, 
and early-stage condition classification, where labeled 
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examples are insufficient. Empirical research demonstrates 
that integrating modified SMOTE with NNs enhances 
AUC, sensitivity, and F1-score while maintaining high 
overall ACC, thereby promoting model generalization 
and predictive performance in small-scale, imbalanced 
datasets.

2. Algorithmic Ensemble Techniques
2.1. Bagging: Bagging (bootstrap aggregating) is 
an ensemble learning technique that enhances NN 
performance in low-data healthcare scenarios by reducing 
variance while improving generalization. The method 
generates multiple bootstrap samples from the original 
dataset and trains separate models on each subset, 
aggregating their predictions to produce a final output. 
This approach is particularly valuable in various clinical 
tasks with small or heterogeneous datasets (e.g., medical 
image classification, EHR-based prognosis, and rare 
event prediction), where overfitting is a serious concern. 
Empirical investigations reveal that combining bagging 
with NNs increases ACC, AUC, and F1-score, stabilizes 
model performance across varied patient cohorts, and 
enhances robustness in limited data environments.

2.2. Boosting: It is an ensemble learning technique that 
sequentially trains multiple weak learners, typically NNs or 
decision trees, to improve predictive performance in low-
data healthcare scenarios. Each successive model focuses 
on the errors of its predecessors, thus enhancing the 
ability of the network to learn from underrepresented or 
difficult-to-classify samples. Several variants of boosting, 
including adaptive boosting (AdaBoost), gradient tree 
boosting, and XGBoost, have been successfully applied in 
clinical settings. AdaBoost iteratively adjusts the weights 
of misclassified samples to focus learning on challenging 
cases. Moreover, gradient tree boosting builds additive 
models in a forward stage-wise fashion to minimize a 
differentiable loss function. XGBoost further optimizes 
this process through regularization, parallelization, 
and handling of missing data, offering state-of-the-art 
performance. These methods are particularly effective in 
rare disease detection, early-stage condition classification, 
and adverse event prediction,, where datasets are small 
and imbalanced. Based on empirical research, integrating 
these boosting techniques with NNs improves ACC, 
AUC, and F1-score, enhances sensitivity to minority 
class events, and provides robust generalization across 
heterogeneous patient cohorts, boosting a powerful 
approach for limited clinical data.

Data Imbalance
Change Loss Function
1. Assign Weight
In low-data healthcare scenarios, NN performance 
can be significantly impacted by class imbalance or 
underrepresented outcomes. Assigning class-specific 
weights adjusts the contribution of each sample to the 

loss function, ensuring that minority or clinically critical 
classes exert greater influence during training. Similarly, 
modifying the loss function (e.g., using weighted cross-
entropy, focal loss, or cost-sensitive loss) directly 
penalizes the misclassification of underrepresented 
classes, enhancing model sensitivity. These approaches are 
especially effective in early-stage condition classification, 
rare disease detection, and adverse event prediction, 
where the number of minority samples is limited. 
Empirical evidence shows that integrating weighted 
training or customized loss functions with NNs improves 
F1-score, AUC, and sensitivity while keeping the overall 
ACC stable, thereby increasing predictive performance 
and robustness in small, imbalanced clinical datasets.

Balance the Dataset
1. Up-Sample and Down-Sample
Balancing the dataset is a key strategy to improve 
NN performance in low-data healthcare scenarios, 
particularly when class imbalance is present. It increases 
the number of samples in the minority class, either 
through duplication or synthetic data generation, 
ensuring that the network adequately learns patterns 
from underrepresented classes. conversely , reduces the 
number of samples in the majority class to prevent bias 
toward overrepresented outcomes. These methods are 
especially valuable in extensive clinical tasks (e.g., adverse 
event prediction, rare disease detection, and early-stage 
condition classification), where minority outcomes are 
rare. According to empirical investigations, combining 
up-sampling and down-sampling with NNs enhances 
AUC, F1-score, and sensitivity while maintaining stable 
overall ACC, thereby improving predictive performance 
and model generalization in small-scale, clinically 
imbalanced datasets.

Difficulty in Optimizing
Transfer Learning
Transfer learning is a powerful strategy for improving 
NN performance in low-data healthcare scenarios 
by leveraging knowledge learned from large, related 
datasets. Pre-trained models, often trained on general 
medical imaging or clinical datasets, can be fine-tuned 
on small target datasets to extract relevant feature 
representations without requiring extensive labeled data. 
This approach is particularly applicable in radiology, 
pathology, ophthalmology, and rare disease detection, 
where annotated samples are scarce. Empirical evidence 
indicates that transfer learning enhances ACC, AUC, and 
F1-score, accelerates convergence, and improves model 
generalization, making it a practical and efficient method 
for deploying NNs in clinical tasks with limited data 
availability.

Problem Reduction
Problem reduction is a strategy employed to improve 
NN performance in low-data healthcare scenarios by 
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simplifying complex tasks into smaller, more tractable 
sub-problems. This approach reduces the effective 
dimensionality and complexity of the learning task, 
allowing models to focus on essential patterns and 
relationships even when labeled data are rare. Techniques 
such as multi-stage classification, hierarchical modeling, 
and decomposition of multi-class problems into 
binary tasks exemplify problem reduction in clinical 
settings. Problem reduction is particularly beneficial in 
multi-disease diagnosis, rare condition detection, and 
longitudinal patient outcome prediction. Empirical 
evidence suggests that integrating problem reduction 
with NNs enhances F1-score, ACC, and AUC, improves 
sensitivity to minority classes, and facilitates model 
generalization in small, heterogeneous clinical datasets.

Learning With Less Data
1. Zero-Shot Learning
Zero-shot learning (ZSL) is a technique that enables NNs 
to generalize to unseen classes without requiring labeled 
examples from those classes during training. In low-data 
healthcare scenarios, ZSL leverages semantic information 
(e.g., textual descriptions, ontologies, or embeddings of 
clinical features) in order to infer relationships between 
known and novel classes. This approach is particularly 
valuable in rare disease identification, emerging pathogen 
detection, and novel condition classification, where 
annotated samples are rare or unavailable. Empirical 
studies affirm that integrating ZSL with NNs enhances 
predictive ACC, AUC, and F1-score while preserving 
robustness and generalization across heterogeneous 
patient cohorts, making it a promising strategy for 
handling limited and evolving clinical datasets.

2. One-Shot Learning
One-shot learning (OSL) is a method that enables NNs 
to learn from a single or very few labeled examples per 
class, making it highly suitable for low-data healthcare 
scenarios. By leveraging prior knowledge, metric learning, 
or embedding spaces, OSL allows models to recognize 
new classes based on similarity to previously learned 
representations. This approach is especially effective in a 
wide variety of clinical tasks (e.g., histopathology image 
classification, rare disease diagnosis, and detection of 
abnormal physiological patterns), where annotated 
samples are extremely limited. Empirical evidence proves 
that integrating OSL with NNs improves F1-score, 
sensitivity, ACC, and AUC while maintaining robust 
generalization across heterogeneous patient cohorts, 
providing an efficient strategy for predictive modeling in 
small and scarce clinical datasets.

3. Few-Shot Learning
Few-shot learning (FSL) is a strategy that enables NNs 
to generalize to new classes with only a few labeled 
examples per class, making it especially practical in low-
data healthcare scenarios. FSL leverages meta-learning, 

embedding spaces, or metric-learning approaches to 
extract transferable knowledge from previously observed 
classes, allowing accurate predictions on underrepresented 
or novel clinical conditions. This method can be 
implemented through data-level approaches, which 
augment or reweight limited samples to enhance learning, 
and parameter-level approaches, which adapt model 
parameters or fine-tune network weights using knowledge 
from related tasks. This method is highly relevant in 
rare disease diagnosis, early-stage cancer detection, and 
identification of unusual physiological patterns, where 
annotated data are extremely scarce. Empirical studies 
show that integrating few-shot learning with NNs 
improves sensitivity, ACC, F1-score, and AUC while 
preserving robust generalization across heterogeneous 
patient cohorts, thereby providing an efficient and 
practical solution for predictive modeling in small and 
imbalanced clinical datasets.

4. Metric Learning
 It is a technique that enables NNs to learn a distance 
function or similarity metric that captures relationships 
between data points, making it particularly suitable in 
low-data healthcare scenarios. By mapping samples into 
an embedding space where similar instances are closer 
and dissimilar ones are farther apart, metric learning 
allows models to generalize from limited labeled data 
and make accurate predictions on underrepresented or 
novel classes. This method is especially relevant in varied 
clinical tasks (e.g., rare disease diagnosis, histopathology 
image classification, and early detection of uncommon 
physiological patterns), where annotated samples are 
rare. Empirical findings demonstrate that integrating 
metric learning with NNs improves F1-score, ACC, 
sensitivity, and AUC, enhances the discrimination of 
minority classes, and provides robust generalization 
across heterogeneous patient cohorts, thereby offering a 
practical solution for predictive modeling in small and 
imbalanced clinical datasets.

5. Neural Turing Machines
Neural Turing machines (NTMs) are considered an 
advanced neural architecture that combines an NN 
with an external memory module, enabling the system 
to store, retrieve, and manipulate information beyond 
the immediate training samples. In low-data healthcare 
scenarios, NTMs are particularly advantageous because 
they can learn algorithms and patterns from limited 
labeled data while leveraging memory to generalize to 
novel or rare clinical conditions. This approach is highly 
relevant in sequential patient monitoring, rare disease 
prognosis, and multi-step clinical decision-making, 
where annotated data are scarce and complex temporal 
dependencies exist. Empirical investigations demonstrate 
that integrating NTMs with NNs enhances AUC, ACC, 
sensitivity, and F1-score, improves model generalization 
across heterogeneous patient cohorts, and provides a 
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flexible framework for predictive modeling in small, 
complex clinical datasets.

Better Optimizing Techniques
1. Meta-Learning
Meta-learning, also known as “learning to learn,” is a 
strategy designed to enhance NN performance in low-data 
healthcare scenarios by enabling models to rapidly adapt 
to new tasks with limited labeled examples. This approach 
leverages knowledge acquired from a distribution of 
related tasks to optimize the model’s initialization, 
learning strategy, or parameter adaptation, allowing 
efficient generalization to unseen clinical conditions. 
This method is particularly valuable in early-stage cancer 
diagnosis, rare disease detection, and personalized 
treatment prediction, where annotated data are scarce and 
heterogeneous. Empirical studies indicate that integrating 
meta-learning with NNs improves ACC, F1-score, 
sensitivity, and AUC, accelerates model convergence, and 
enhances generalization across patient cohorts, offering a 
robust and practical solution for predictive modeling in 
small and imbalanced clinical datasets.

Table 2 summarizes other strategies for managing 
limited datasets in healthcare NN applications. Each 
method highlights how NNs can efficiently learn from 
small or imbalanced datasets, including architectural 
modifications, data augmentation, hybrid approaches, 
and the use of synthetic or simulated data.

Discussion
This review highlights the increasing relevance of NNs 
in healthcare applications where data availability is 
frequently constrained. Across diverse domains—ranging 
from medical imaging and pathology to genomics and 
clinical decision support—NNs have demonstrated 
strong performance when tailored strategies are adopted 

to mitigate the limitations imposed by small datasets. 
Our synthesis underscores that, while CNN architectures 
demand large-scale datasets for generalizable learning, 
recent methodological innovations enable effective use of 
scarce data resources in clinical research.

Consistent with earlier work by Shaikhina and 
Khovanova, our findings revealed that small-data 
approaches (e.g., data augmentation, transfer learning, and 
synthetic data generation) are indispensable for ensuring 
model robustness in healthcare contexts.17 More recent 
research has further validated the value of GANs and 
Bayesian neural architectures in overcoming data scarcity, 
particularly in medical imaging classification.19,20 These 
findings align with our results, showing that imaging-
intensive domains preferentially adopt augmentation, 
transfer learning, and GAN-based synthesis to expand 
training corpora and enhance diagnostic ACC.

Strategies such as weak supervision, semi-supervised 
learning, and contrastive pretraining were dominant in 
text-based and tabular-based healthcare applications. 
These approaches allow models to leverage large pools of 
unlabeled data, thereby reducing dependency on costly 
expert annotations. Similar trends have been reported in 
clinical natural language processing, where transformer-
based architectures with prompt tuning have improved 
phenotyping and cohort identification despite sparse 
datasets.13,15,21,22 The convergence of our findings with 
these reports suggests that semi-supervised paradigms 
will play a central role in scaling NN applications to 
under-resourced healthcare settings.

A critical challenge identified across domains is the issue 
of class imbalance, which compromises predictive validity 
in rare-event detection tasks (e.g., arrhythmia monitoring 
or intensive care unit event forecasting). Our review 
confirmed the widespread adoption of cost-sensitive 
learning, focal loss functions, and calibrated thresholds 

Table 2. Other Limited Dataset Handling Methods

Method Description

Compact NN architectures
Designing networks with fewer parameters and shallower depth to efficiently learn from limited data while 
distributing relevant information across layers

Improved filter initialization
Using advanced filter initialization techniques to enhance convergence and stability when training on small 
datasets

Cross-domain filter learning
Learning filter patterns from large domain-specific datasets and using them as initial filters for small target 
datasets, followed by fine-tuning

Hybrid architectures
Combining NNs with other learning algorithms (e.g., dictionary learning) to enhance feature extraction from 
limited data

Pre-training
Training networks on related tasks or datasets before the target task, enabling faster convergence and improved 
generalization

Subsequent probability NNs and support 
vector machines

Using probability density function classifiers, including Gaussian and Gaussian mixture models, multilayer 
perceptrons, radial-basis function networks, and boundary-forming classifiers to estimate posterior probabilities 
and minimize classification errors

Public data annotation
Leveraging publicly available web data and AI-assisted annotation tools (e.g., Supervisely) to create labeled 
datasets while considering copyright and licensing restrictions

Recursive classification
Transforming complex tasks into multi-level or hierarchical classification problems, applying recurrent or 
recursive classifiers to improve learning efficiency

Synthetic data generation
Producing synthetic data using simulation engines or procedural generation techniques to augment limited 
datasets, increasing sample diversity and improving model performance

Simulation-based learning
Creating simulated environments for model training, reducing dependency on real-world data, and enabling 
learning in rare or hard-to-capture clinical scenarios

Note. NN: Neural network; AI: Artificial intelligence.
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to address this imbalance. Comparable findings were 
reported by Bargagna et al and Eshun et al, demonstrating 
that Bayesian CNNs can provide calibrated probability 
estimates that improve reliability in low-prevalence 
clinical scenarios.19,20 Thus, our analysis reinforces the 
need for methodological innovations that go beyond 
simple oversampling and concentrate on improving 
probabilistic calibration in limited-data environments.

Another key implication is the shift toward multimodal 
integration. Oncology and precision medicine studies 
increasingly combine imaging, genomics, and EHRs 
within multimodal NN frameworks to compensate for 
limited data within any single modality. This conforms 
to prior evidence that hybrid architectures, particularly 
graph NNs, can effectively integrate heterogeneous 
biomedical data sources.8,16,23 Such integrative strategies 
appear especially promising for personalized medicine, 
where small cohort sizes are a common constraint.

Our findings also highlight the role of meta-learning, 
one-shot, and few-shot paradigms as emerging solutions 
for healthcare applications with extreme data scarcity. 
While these approaches remain relatively nascent in clinical 
deployment, they mirror successful implementations 
in computer vision and speech recognition. ZSL, in 
particular, holds promise for the rapid deployment of 
diagnostic models across institutions without requiring 
local retraining, although concerns regarding model 
generalizability and bias remain unresolved.18,24,25 
Interpretively, these comparisons indicate that while 
our strategies achieve robust performance in controlled 
settings, real-world deployment may require integration 
with federated learning to handle federated datasets, a 
frontier not fully covered in our review but increasingly 
prominent in post-2023 studies.

Despite these strengths, limitations inherent to narrative 
reviews must be acknowledged. The heterogeneity of 
included studies precluded meta-analysis, potentially 
introducing selection bias. In addition, the focus on 
English-language publications (2000–2025) prevented 
the chance of evaluating non-English or emerging 
preprints. Moreover, while performance metrics are 
promising, external validation across diverse populations 
remains inconsistent, as noted in the systematic reviews 
of machine learning in healthcare, which report gaps in 
generalizability due to dataset variability.5 Accordingly, 
future studies should prioritize prospective trials 
evaluating hybrid architectures (e.g., NN combined with 
graph NNs for multimodal data) and meta-learning for 
few-shot scenarios, particularly in underrepresented 
domains like remote monitoring. Longitudinal studies 
assessing long-term clinical impact (e.g., cost reductions 
and patient outcomes) would further validate these 
strategies.

Briefly, this review elucidated actionable pathways 
for NN deployment in data-limited healthcare contexts, 
with interpretations and comparisons affirming their 
transformative potential while highlighting avenues for 

refinement.

Conclusion
NNs have shown considerable promise for advancing 
healthcare analytics, even in contexts where data scarcity is 
a critical barrier. This review underscores that innovative 
approaches (e.g., transfer learning, data augmentation, 
synthetic data generation, weak and semi-supervised 
learning, and Bayesian modeling) enable effective model 
training with limited datasets. Emerging paradigms (e.g., 
multimodal integration, meta-learning, and few-/zero-
shot techniques) further expand the applicability of NNs 
to complex clinical problems where large-scale data are 
rarely available. Our synthesis suggests that the successful 
deployment of NNs in low-data environments requires not 
only algorithmic innovation but also rigorous validation 
strategies, careful management of class imbalance, 
and attention to clinical interpretability. When these 
methodological considerations are addressed, NNs can 
achieve diagnostic and prognostic performance that rivals 
or exceeds conventional methods, thereby supporting 
personalized medicine and evidence-based decision-
making. Despite these advances, challenges related to 
generalizability, reproducibility, and bias remain. Thus, 
other studies should set priorities for external validation 
across varying populations, harmonized benchmarking 
frameworks, and enhanced explainability in order to 
strengthen clinical trust. Addressing these gaps will be 
essential for ensuring that NNs trained on limited datasets 
can be safely and effectively translated into routine 
healthcare practice.
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