Digital Health Trends Journal. 2025;1(1):29-40.
doi:10.341 72/dhtj.04

https://dhtjournal.ae

Narrative Review

Neural Networks in Healthcare:

Digital Health Trends Journal—

L))

Check for
updates

A Narrative Review of

Innovative Strategies for Learning From Limited Datasets

Amir Torab Miandoab’ =, Saeid Masoumi*

'Medical Education Research Center, Health Management and Sa
Medical Sciences, Tabriz, Iran
2Karlsruhe Institute of Technology, Karlsruhe, Germany

*Corresponding author: Saeid Masoumi, Email: s.masoumi.ac@gmail.com

fety Promotion Research Institute, Tabriz University of

Abstract

Background: Neural networks (NNs) are increasingly applied for
various healthcare practices. Their performance, however, depends
on large datasets often unavailable in clinical contexts, necessitating
innovative strategies for enabling NNs to function effectively with
small or limited datasets. Thus, this study evaluated evidence on NN
applications in healthcare with a focus on strategies for handling
data scarcity.

Methods: PubMed, Scopus, Web of Science, Embase, and IEEE Xplore
databases and Google Scholar were searched for related studies.
Data were extracted on clinical domains, model architecture, dataset
characteristics, limited data strategies, and performance metrics and
synthesized into thematic categories.

Results: NNs were applied in radiology, pathology, cardiology,
neurology, oncology, genomics, clinical natural language processing,
decision support, and remote monitoring. Data scarcity was
mitigated through data-centric and model-centric approaches and
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advanced paradigms. Imaging-focused applications heavily relied on augmentation and transfer learning, whereas text- and tabular-
based tasks leveraged weak supervision and contrastive pretraining. Multimodal integration, combining imaging, genomics, and
electronic health records (EHRs), emerged as a powerful strategy to overcome single-modality data constraints. Despite promising
performance gains, external validation and generalizability remain limited across populations.

Conclusion: NNs demonstrate strong potential in healthcare, even when constrained by small datasets, provided that specialized
strategies are employed. Transfer learning, data augmentation, generative modeling, multimodal integration, and meta-learning
substantially enhance model performance and clinical applicability. However, challenges of reproducibility, bias, and scalability
persist. Future research should prioritize federated learning, harmonized benchmarking, and explainability to ensure safe, equitable,
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and clinically trustworthy NN implementation in data-limited healthcare settings.
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Background

Neural networks (NNs) are computational models
inspired by the structure and function of the human
brain and consist of interconnected nodes referred to
as neurons. These networks are organized into an input
layer, one or more hidden layers, and an output layer."”
Each connection between neurons is associated with a
weight parameter that determines the strength of the
transmitted signal. These weights are adjusted by iterative
training using learning algorithms, enabling the network
to capture complex, non-linear relationships between
inputs and outputs.*’ In multi-layer architectures, neurons
are connected in a manner that allows hierarchical
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representation learning, similar in concept to biological
neural processing.®

A key advantage of NN is their adaptability to changing
inputs without requiring the explicit modification of
the output structure”” Unlike traditional algorithmic
approaches, NNs can address problems for which no
explicit solution is known or where the solution space
is highly complex. They excel in different tasks, such
as pattern recognition, prediction, and classification.?
Additional benefits include distributed data storage,
tolerance to incomplete or noisy inputs, fault tolerance,
scalability, and parallel processing capabilities.” !
Originally developed within the field of artificial
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intelligence, NNs have rapidly gained traction across
diverse application domains, including finance, business
forecasting, manufacturing, and predictive maintenance.'?
In healthcare, NNs have demonstrated substantial utility
in various areas, such as medical image analysis, disease
diagnosis, outcome prediction, and clinical decision
support.”® By leveraging machine learning, healthcare
organizations can enhance diagnostic accuracy (ACC),
improve treatment planning, and optimize resource
utilization, often at reduced cost.!* Moreover, NNs offer
a powerful framework for modeling and interpreting
complex clinical datasets, facilitating the discovery of
patterns and relationships that may not be apparent
through traditional statistical methods.”” This potential
has fueled growing interest in artificial intelligence for
addressing multifaceted challenges in medicine and life
sciences.'®

However, a significant limitation in applying NNs to
healthcare is the requirement for large training datasets
to achieve robust performance. As model complexity
increases, so does the volume of data needed for effective
learning."” While many recent advances in deep learning
have been driven by the availability of massive datasets,
such resources are rarely available in health sciences due
to privacy constraints, high data acquisition costs, and
variability in data collection methods."* Consequently,
learning efficiency may decline substantially in small-
sample scenarios, thereby reducing the applicability of
conventional NN (CNN) approaches.

Given these constraints, there is a pressing need for
innovative strategies that enable NNs to effectively operate
with limited datasets, particularly in healthcare contexts
where data scarcity is the norm. Therefore, this study
addresses this gap by demonstrating how tailored NN
architectures can be adapted to small-scale experimental
or observational datasets in order to identify key causal
factors influencing complex health-related outcomes.

Materials and Methods

This study employed a narrative review methodology
to synthesize and critically evaluate the literature on
NN applications in healthcare, with a specific focus on
strategies for learning from limited datasets. A narrative
review approach was selected due to its flexibility in
addressing broad and complex research questions,
allowing for an integrative assessment of diverse study
designs and methodological perspectives.

Search Strategy

A comprehensive literature search was conducted in
major scientific databases, including PubMed, Web of
Science, Scopus, Embase, IEEE, and the Google Scholar
search engine, to capture both medical and computational
perspectives. The search covered publications from
January 2000 to June 2025 to reflect contemporary
developments in NN methodologies and their healthcare

applications. Keywords and Boolean operators were
combined as follows:

(“neural network” OR “artificial neural network” OR
“deep learning” OR “perceptron” OR “radial basis
network” OR “RBN” OR “machine learning” OR “ANN”
OR “CNN” OR “convolutional neural network” OR
“RNN” OR “recurrent neural network” OR “feedforward
neural network” OR “FNN” OR “backpropagation
network” OR “shallow neural network” OR “multilayer
perceptron” OR “MLP” OR “self-organizing map” OR
“SOM” OR “extreme learning machine” OR “ELM”
OR “GAN” OR “generative adversarial network”) AND
(“healthcare” OR “medical” OR “clinical” OR “medicine”
OR “health sciences” OR “public health” OR “biomedical”
OR “hospital” OR “patient care” OR “health service” OR
“health” OR “care”) AND (“small dataset” OR “limited
data” OR “low-resource” OR “data scarcity” OR “few-
shot” OR “one-shot” OR “low-data” OR “small sample”
OR “data-constrained” OR “sparse data” OR “tiny
dataset” OR “restricted dataset” OR “limited sample size”)
Additional sources were identified through the manual
screening of reference lists from relevant articles and
review papers.

Inclusion and Exclusion Criteria

Studies were included if they focused on the use of NNs
in healthcare-related applications, reported methods,
strategies, or adaptations for handling limited or
small datasets, and were published in English in peer-
reviewed journals or reputable conference proceedings.
On the other hand, the exclusion criteria included non-
healthcare applications, studies not involving NN models,
and editorials, commentaries, and opinion pieces without
methodological details.

Study Selection and Data Extraction

Two reviewers independently screened titles and abstracts
for relevance, followed by full-text assessments. In
addition, disagreements were resolved through discussion
or consultation with a third reviewer. For each included
study, data were extracted on application domain, NN
architecture, dataset characteristics, strategies for limited
data, and performance metrics and reported outcomes.

Data Synthesis

No formal meta-analysis was conducted, given the
heterogeneity of study designs, applications, and
outcome measures. Instead, the findings were narratively
synthesized and organized into thematic categories,
including general applications of NNs in healthcare
(1), implications reported due to small datasets (2), and
innovative strategies and methodological adaptations for
low-data scenarios (3).

This thematic synthesis enabled the identification of
prevailing trends, methodological gaps, and promising
approaches for future research in applying NN to healthcare
problems with limited data availability.
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Results

In this narrative review, the required data were
synthesized from diverse studies on the deployment
of NNs in healthcare settings characterized by limited
datasets. Table 1 provides a comprehensive summary
of these applications, categorized by clinical domains. It
delineates the primary clinical tasks, the predominant
data modalities, the model architectures, innovative low-
data learning strategies implemented to mitigate scarcity
and imbalance, key dataset characteristics (e.g., sample
sizes, class imbalances, and noise levels), and performance
metrics and outcomes. Notably, across medical imaging
and oncology domains, several strategies (e.g., transfer
learning, data augmentation, and self-supervised
pretraining) consistently yielded high performance, with
area under the curve (AUC) values exceeding 0.85 and
improvements over traditional methods ranging from 5%
to 15%. This tabular overview underscores the versatility

of NNs in overcoming data limitations, highlighting
their potential to enhance diagnostic ACC, prognostic
precision, and operational efficiency in
constrained environments.

The multifaceted implications of limited datasets
on NN performance in healthcare contexts have been
systematically outlined in this study. Figure 1 presents
a hierarchical taxonomy that elucidates the primary
challenges, including overfitting, difficulties in capturing
complex patterns, poor generalization, and insufficient
data variance, alongside a spectrum of innovative
mitigation strategies. These strategies encompass
advanced optimization techniques (e.g., stochastic
gradient descent and Adam), transfer learning, problem
reduction, learning with fewer parameters, loss function
modifications, dataset balancing, data generation and
augmentation, regularization approaches (e.g., dropout
and L1/L2 penalties), and ensemble methods. This visual

resource-

Table 1. Applications of Neural Networks Across Healthcare Domains: Key Clinical Tasks, Data Modalities, Architectures, Low-Data Strategies, Dataset

Challenges, and Performance Outcomes

Domain

Clinical tasks

Data modalities

Model

architectures

Performance metrics
and outcomes

Dataset

Low-data strategi _n
ow-cata stralegles  haracteristics

Lesion detection,

Dice: 0.80-0.95;

Augmentation, <1,000 samples/

Medical imaging seomentation X-ray, CT, MRI, CNNs, UNet, transfor learnin class: class AUC: 0.87-0.98; ACC:
(radiology and nuclear 8 o PET/CT, and ResNet, ViTs, . & ) ¢ . >90%; outperforming
. classification, and pseudo-labeling, and  imbalance; noise -
medicine) ultrasound and CapsNets traditional methods by
response assessment ensemble methods (up to 25%) 5159
— o
. Multi-instance . . AUC: >0.90; F1-score:
Digital pathology and TuAmo'r gradlng, Whole-slide CNNs and wal tlhAng, stain <A1 ’OO.O samples, 0.85-0.95; strong
mitosis detection, . ; normalization, and gigapixel images; o
cytology e images (WSls) attention L . ! gains via GAN-based
subtype classification ) weak supervision stain heterogeneity .
pooling augmentation
_| | H . . o 00. :
Ophthalmology and DR, g[fiucoma, AMD Fundus, OCT, ‘ CNN, ViTs, Class ba]anced . 0 690 images; ACC: 85 95‘ ‘/,‘AUC
screening, and skin ~ and dermoscopic sampling and domain device >0.85; sensitivity/
dermatology ) P . and CapsNets . . o
lesion classification  images adaptation heterogeneity specificity >85%
Arrhythmia detection, ECG, 1D CNNs, Beat—leve]‘ AUC: 0.85-0.93;
. . R . CNN-RNN segmentation <1,000 samples;
Cardiology heart failure risk, and  echocardiography, . ) reduced length of stay
. ) S . hybrids, and and contrastive rare events
ischemia prediction  and cardiac MRI o by ~2 days
TCNs pretraining
. . Sensitivity/specificity
Neurology and critical Seizure detection and EEG and ICU time Temporal Multitask learm’ng ]07‘76’214 >85%; robust
care ICU event prediction  series CNNs and and self-supervised  patients; sparse prediction of rare
LSTM/GRU pretraining data
events
Oncology outcomes and  Survival prediction EHR, imaging, and Multimodal Feature sglect|on 58-265 subjects; AUC: >Of90; improved
rognosis and recurrence risk  genomics NNs and and multimodal high dimensionality prognostic accuracy;
prog GNNs integration cost reduction
Genomics/proteomics Variant effect Genomic/ Autoencoders, 1y icing and Small samples; F1-score: 0.80-0.95;
- 'p o prediction and drug . . MLPs, and 5 . pies; RMSE <1; ACC: 98.3%
and precision medicine proteomic profiles feature reduction p>»n .
response RBMs (independent test)
Clinical NLP and Diagnosis extraction Clinical notes and Text CNNs/ Prompt tumr?g Sparse text; note AUC: >‘O.856 |-mp-roved
) and cohort RNNs and and contrastive ; cohort identification
phenotyping ) P reports o heterogeneity
identification Transformers ~ pretraining accuracy
Operational and decision  Triage, readmission, ~ Tabular EHR and MLPs and Cost—éen51t|ve 10-76,214 records; AUC: 0'85_0'9(.); .
) ) learning and reduced readmission
support and forecasting admin data LSTM/GRU . sparse
ensembling rates
. o/ .
Remote monitoring and  Fall risk and therapy ~ Wearables and 1D CNNs and  Noise injection and Temppral . ACC: >85 /0.’
I . . . ) sparsity; device early detection of
rehabilitation adherence spirometry RNN hybrids ~ domain adaptation . )
heterogeneity exacerbations
Spatiotemporal Aggregated AUC: >0.85;
. . Outbreak detection EHRs, claims, and ~ NNs and Synthetic data 68€8 . T .
Public health surveillance . . s ) data; regional enhanced population-
and risk mapping mobility data temporal generation and GANs . S
CNNs heterogeneity level predictions

Note. NN: Neural network; GNN: Graph neural network; EHR: Electronic health records; NLP: Natural language processing; CNN: Convolutional neural
network; RNN: Recurrent neural network; CT: Computed tomography; MRI: Magnetic resonance imaging; PET: Positron emission tomography; DR: Diabetic
retinopathy; AMD: Age-related macular degeneration; ICU: Intensive care unit; OCT: Optical coherence tomography; ECG: Electrocardiogram; EEG:
Electroencephalogram; ViTs: Vision transformers; ResNet: Residual network; CapsNet: Capsule network; TCN: Temporal convolutional network; LSTM: Long
short-term memory; GRU: Gated recurrent unit; MLP: Multilayer perceptron; RBM: Restricted Boltzmann machine; GAN: Generative adversarial network; Dice:
Dice similarity coefficient; AUC: Area under the curve; ACC: Accuracy.
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Figure 1. Implications of Limited Datasets and Strategies for Their Management in Neural Network-Based Healthcare Applications.

framework underlines the interconnected nature of these strategies (e.g., beat-level segmentation, temporal data
issues and solutions, underscoring their relevance to augmentation, or contrastive pretraining) to enhance
enhancing model robustness in data-scarce environments. generalization. Empirical results from recent studies
Each strategy is elaborated in detail in the subsequent indicate that even with fewer than 1,000 patient records,
sections of this review. LSTM-based architectures achieved AUC values ranging
from 0.85 to 0.93, demonstrating competitive or superior
Implication of Limited Dataset performance compared to traditional machine learning
Lack of Generalization models. Moreover, by efficiently leveraging temporal
Data Generation dependencies, LSTMs have been associated with clinically
1. Long Short-term Memory meaningful outcomes, such as the earlier detection of
In scenarios where the available dataset is small or adverse events and reduced length of hospital stay.
temporally sparse, long short-term memory (LSTM)
networks provide a robust strategy for modeling 2. Synthetic Minority Oversampling Technique
sequential dependencies and extracting meaningful Synthetic minority oversampling technique (SMOTE)
representations from healthcare data. Contrary to has been widely adopted to address the challenges of
conventional feed-forward NNs, LSTMs are designed small and imbalanced clinical datasets. By generating
to retain and selectively update long-range contextual the synthetic samples of minority classes through
information, thereby mitigating information loss in short interpolation between nearest neighbors, SMOTE
sequences or under-sampled datasets. This property reduces class imbalance without simply duplicating
is particularly advantageous in clinical domains, such existing records, thereby mitigating overfitting and
as cardiology (e.g., arrhythmia detection from an enhancing generalization in NN training. In healthcare
electrocardiogram), neurology (e.g., seizure prediction applications, such as disease classification, prognosis
from an electroencephalogram), and intensive care prediction, and rare-event detection, SMOTE has enabled
monitoring, where the number of annotated cases models to learn more discriminative features even when
may be limited, yet the temporal dimension contains the number of positive cases is scarce. Empirical studies
latent predictive signals. In the context of low-data have shown that SMOTE, when combined with deep
regimes, LSTMs are often coupled with complementary architectures (e.g., CNNs or LSTMs), improves sensitivity
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and Fl-scores by 5-15% compared to training on raw
imbalanced data. This strategy is particularly useable
in clinical tasks where minority outcomes (e.g., early-
stage cancer, rare arrhythmias, or adverse drug events)
are underrepresented, leading to more reliable decision
support systems.

3. Generative Adversarial Networks

Generative adversarial networks (GANs) have emerged
as a powerful strategy for addressing the scarcity of
annotated healthcare data by synthesizing realistic,
high-fidelity samples that augment existing datasets.
Through adversarial training between a generator and
discriminator, GANs capture complex data distributions
and generate clinically plausible images or signals, thereby
improving model robustness and mitigating overfitting in
low-data regimes. In some domains (e.g., medical imaging,
pathology, and genomics), GAN-based augmentation has
been shown to enhance performance metrics, with gains
of 5%-20% in sensitivity, F1-score, and AUC compared
to models trained on original datasets alone. Moreover,
GAN:s facilitate domain adaptation across heterogeneous
sources (e.g., different scanners or staining protocols),
further supporting generalization in real-world clinical
applications.

4. Semi-Supervised Learning

Semi-supervised learning (SSL) leverages both labeled and
unlabeled data to improve model performance in low-data
settings, a common challenge in healthcare domains. By
exploiting the underlying structure of unlabeled examples
through techniques such as consistency regularization,
pseudo-labeling, or graph-based propagation, SSL enables
NNs to learn robust feature representations without
requiring extensive annotations. This approach has
proven effective in a number of tasks, including medical
image classification, electronic health record (EHR)
phenotyping, and rare-event prediction, where labeled
samples are rare. Empirical results indicate that SSL can
increase ACC, AUC, and F1-scores by 5-15% compared
to fully supervised models trained solely on limited
labeled data while also enhancing generalization across
heterogeneous patient cohorts.

5. Unsupervised Feature Learning

Unsupervised feature learning involves extracting
meaningful representations from unlabeled data. The
primary objective is often to identify low-dimensional
features that capture the intrinsic structure underlying
high-dimensional input data. In addition, conducting
feature learning in an unsupervised manner enables a
form of semi-supervised learning, where features derived
from an unlabeled dataset can subsequently enhance
performance in supervised tasks using labeled data. Several
methodologies have been developed to achieve effective
unsupervised feature learning, which are discussed in the
following sections.

5.1. K-Means Clustering: K-means clustering is an
unsupervised technique that can enhance NN performance
in low-data healthcare settings by identifying natural
groupings within sparse or heterogeneous datasets.
By partitioning data into clusters based on similarity,
K-means facilitates the generation of pseudo-labels, the
discovery of latent patient subgroups, and informed
stratified sampling. This approach is particularly valuable
in domains such as EHR-based phenotyping, rare disease
detection, and patient risk stratification, where there
are limited labeled data. Empirical studies demonstrate
that integrating K-means clustering with deep learning
pipelines can improve classification ACC, AUC, and F1-
score by 5%-10% while enabling models to generalize
more effectively across underrepresented patient cohorts.

5.2. Principal Component Analysis: Principal component
analysis (PCA) is a dimensionality reduction technique
that is widely used to enhance NN performance
in low-data healthcare settings. By transforming
high-dimensional clinical data into a smaller set of
uncorrelated principal components, PCA reduces noise,
mitigates overfitting, and highlights the most informative
features for model training. This approach is particularly
invaluable in domains such as genomics, proteomics, and
multimodal EHR analysis, where the number of features
often exceeds that of samples. According to empirical
studies, integrating PCA with deep learning architectures
improves classification ACC, Fl-score, and AUC, even
when sample sizes are restricted, while also enabling more
interpretable representations of patient subgroups and
clinical patterns.

5.3.Local Linear Embedding: Locallinear embedding (LLE)
is a nonlinear dimensionality reduction technique that
preserves local neighborhood relationships within high-
dimensional clinical data, making it particularly useful
in low-data healthcare scenarios. By projecting complex
datasets onto a lower-dimensional manifold, LLE reduces
noise and redundancy, facilitates feature extraction, and
enhances the training efficiency of NNs when there is a
limited number of labeled samples. This approach has
been successfully applied in medical imaging, genomics,
and EHR-based phenotyping, enabling models to capture
intrinsic data structures and improve generalization.
Moreover, empirical results indicate that combining LLE
with deep learning architectures can increase classification
ACC, AUC, and F1-scores, even when working with small
patient cohorts, while also supporting the interpretable
representations of latent clinical patterns.

5.4. Independent Component Analysis: ICA is a statistical
technique that separates multivariate signals into
statistically independent components, making it especially
valuable for low-data healthcare applications. By
disentangling the overlapping sources of variation in high-
dimensional datasets, ICA reduces redundancy, enhances
signal-to-noise ratio, and facilitates the extraction of
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meaningful features for NN training when there are limited
labeled data. This approach has been effectively applied in
a variety of domains (e.g., electroencephalogram-based
seizure detection, functional magnetic resonance imaging
analysis, and multi-omics data integration), enabling
models to capture independent underlying patterns.
Based on empirical studies, integrating ICA with deep
learning architectures improves classification ACC, AUC,
and F1-score, even with small sample sizes, in addition
to supporting interpretable insights into latent clinical
factors.

5.5. Unsupervised Dictionary Learning: Unsupervised
dictionary learning (UDL) is a feature extraction
technique that learns a set of basis elements (dictionary)
from unlabeled data, enabling the sparse representation
of high-dimensional clinical datasets. This approach is
particularly efficient in low-data healthcare scenarios,
as it reduces dimensionality, captures salient patterns,
and mitigates overfitting in NN training. UDL has been
successfully employed in medical imaging, genomics, and
physiological signal analysis, where there are finite labeled
samples. Empirical evidence shows that integrating
UDL with deep learning architectures enhances model
performance and classification ACC, AUC, and F1-score
while also providing interpretable representations of
underlying clinical structures.

6. Data Doubling, Holdout Data, and Data Creation

In low-data healthcare scenarios, strategies such as
data doubling, holdout partitioning, and synthetic
data creation provide effective solutions to improve
NN performance. Data doubling involves replicating
or augmenting existing samples to increase dataset
size, while holdout data ensures reliable evaluation by
reserving a subset for validation, preventing overfitting.
On the other hand, synthetic data creation generates new
samples that mimic the statistical properties of real data,
using techniques such as interpolation, bootstrapping,
or generative models. These combined strategies
enhance model generalization, mitigate class imbalance,
and support robust training in medical imaging, EHR
analysis, and physiological signal modeling. Empirical
studies confirm that integrating these approaches with
deep learning architectures improves ACC, AUC, and
F1-score, even when the original dataset is limited, while
maintaining clinical relevance and interpretability.

7. Algorithmic Expansion of Training Data

Algorithmic expansion of the training data is a strategy
to address scarcity in clinical datasets by generating
additional informative samples through computational
methods, including data augmentation (e.g., rotations,
scaling, and noise injection), synthetic sample
generation via generative models, and interpolation-
based approaches. By enriching the dataset, this strategy
reduces overfitting, enhances NN generalization, and

captures latent patterns in both imaging and tabular
healthcare data. Empirical evidence demonstrates that
models trained with algorithmically expanded datasets
achieve higher ACC, AUC, and Fl1-scores, even when
original sample sizes are limited, and improve robustness
in diverse clinical tasks (e.g., medical image classification,
EHR phenotyping, and physiological signal prediction).

Data Augmentation

Data augmentation is a widely used strategy to enhance
NN performance in low-data healthcare settings by
artificially increasing the diversity and size of training
datasets. In medical imaging, augmentation techniques
(e.g., rotations, flips, scaling, intensity shifts, and elastic
transformations) generate new plausible samples without
additionallabeling effort. In tabular or signal-based clinical
data, methods like noise injection, jittering, and time-
series warping provide similar benefits. By introducing
variability, data augmentation reduces overfitting,
improves model generalization, and enables NNs to
learn more robust representations from limited datasets.
Empirical studies have demonstrated that applying data
augmentation in radiology, pathology, ophthalmology,
and wearable sensor analysis enhances ACC, AUC, and
F1-scores by 5-15%, even when the original sample size
is small.

Regularization

1. Convolutional Network With Dropout

Convolutional NNs (CNNs) equipped with dropout
provide an effective strategy for mitigating overfitting
in low-data healthcare scenarios. Dropout randomly
deactivates a subset of neurons during training, which
forces the network to learn redundant and robust feature
representations, thereby enhancing generalization from
limited samples. This approach is particularly beneficial
in medical imaging tasks (e.g., lesion detection, tumor
classification, and retinal disease screening), where
labeled datasets are often small. Empirical studies uncover
that CNNs with dropout achieve improved ACC, AUC,
and F1-scores compared to standard CNNs while keeping
performance stable across heterogeneous patient cohorts
and imaging devices.

2. Ridge
Ridge regularization (L2 penalty) is an extensively used

technique to improve NN generalization in low-data
healthcare settings. By penalizing large weight coefficients,
Ridge regularization constraints model complexity,
reduces overfitting, and encourages the network to
learn more stable and robust feature representations
from limited samples. This approach is particularly
valuable in EHR-based prognosis prediction, medical
imaging classification, and physiological signal analysis,
where the number of features is often more than that of
samples. Empirical studies represent that integrating
Ridge regularization into NN architectures can enhance
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ACC, AUC, and Fl-scores while preserving consistent
performance across heterogeneous patient cohorts.

3. Lasso Regularization

Lasso regularization (L1 penalty) is an effective method
for enhancing NN performance in low-data healthcare
settings by promoting sparsity in model weights. By
driving less informative feature coeflicients toward zero,
Lasso facilitates automatic feature selection, reduces
overfitting, and enables the network to focus on the most
predictive signals in limited datasets. This approach is
particularly useful in genomics, proteomics, EHR-based
phenotyping, and medical imaging, where the number
of features often exceeds that of samples. According
to empirical evidence, integrating Lasso regularization
improves ACC, AUC, and F1-scores while also providing
more interpretable models for clinical decision support.

4. Elastic Net

Elastic Net regularization combines L1 (Lasso) and L2
(Ridge) penalties to enhance NN performance in low-
data healthcare settings. By simultaneously promoting
sparsity and controlling large weight magnitudes, Elastic
Net mitigates overfitting, selects informative features,
and stabilizes model training when there is a restricted
number of labeled samples. This approach is particularly
successful in domains with high-dimensional clinical
data (e.g., genomics, multi-omics integration, EHR-based
prognosis prediction, and medical imaging classification).
Based on previous empirical studies, incorporating Elastic
Net regularization improves ACC, AUC, and Fl-scores
while providing more interpretable and robust models
that are capable of generalizing across heterogeneous
patient populations.

Ensembling

1. Data Level Approach: Resampling Techniques

1.1. Random Under-Sampling: RUS is a technique utilized
to address class imbalance in low-data healthcare datasets
by selectively reducing the number of samples from the
majority class. This approach helps NNs concentrate
on minority class patterns, mitigating bias toward
overrepresented outcomes and improving the detection
of rare events. RUS is particularly relevant in different
clinical tasks (e.g., rare disease classification, adverse
event prediction, and early-stage condition detection),
where minority outcomes are underrepresented.
Empirical research demonstrates that integrating RUS
with deep learning models enhances F1-score, sensitivity,
and AUC while maintaining acceptable overall ACC, thus
improving predictive performance and clinical utility in
limited and imbalanced datasets.

1.2. Random Over-Sampling: ROS is a technique designed
to address class imbalance in low-data healthcare
datasets by duplicating samples from the minority class.
This strategy ensures that NNs are exposed to sufficient

examples of rare or underrepresented outcomes, reducing
bias toward the majority class and enhancing the detection
of clinically important events. ROS is particularly valuable
in early disease detection, adverse event prediction, and
rare condition classification, where positive cases are
scarce. Empirical studies indicate that integrating ROS
with deep learning models improves AUC, sensitivity,
and Fl-score, while preserving robust overall ACC,
thereby enhancing predictive performance and clinical
applicability in small and imbalanced datasets.

1.3. Cluster-Based Over Sampling: CBOS is an advanced
method to focus on class imbalance in low-data
healthcare settings by generating synthetic minority-class
samples based on clustered structures within the data.
Unlike simple random oversampling, CBOS preserves the
intrinsic distribution of minority-class samples by creating
new data points within cluster boundaries, thereby
reducing the risk of overfitting while enhancing model
generalization. This approach is particularly practical in
rare disease detection, adverse event prediction, and early-
stage condition classification, where minority outcomes
are underrepresented. Empirical evidence reveals that
integrating CBOS with NNs improves sensitivity, AUC,
and Fl-score, while maintaining robust overall ACC,
thereby improving clinical applicability and predictive
performance in small and heterogeneous datasets.

1.4. Informed Oversampling: Synthetic Minority Over-
Sampling Technique: SMOTE isan informed oversampling
method developed to handle class imbalance in low-data
healthcare datasets. Contrary to the simple duplication of
minority samples, SMOTE generates synthetic instances
by interpolating between existing minority-class
examples, thereby preserving the intrinsic feature space
distribution while reducing overfitting. This approach is
particularly valuable in a variety of clinical tasks (e.g., rare
disease detection, early-stage cancer classification, adverse
event prediction, and other low-prevalence conditions).
According to empirical investigations, combining SMOTE
with NNs improves F1-score, sensitivity, and AUC while
maintaining high overall ACC, thereby enhancing clinical
utility and predictive performance in small, imbalanced
datasets.

1.5. Modified Synthetic Minority Oversampling Technique:
The modified SMOTE is an advanced variant of SMOTE
designed to improve minority class representation in
low-data healthcare datasets while minimizing potential
noise and overfitting. Unlike conventional SMOTE, the
modified version incorporates different strategies (e.g.,
adaptive neighbor selection, noise filtering, or local
density estimation) to generate synthetic samples that
more accurately reflect the minority class distribution.
This approach is particularly useful in clinical applications
involving adverse event prediction, rare disease detection,
and early-stage condition classification, where labeled
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examplesare insufficient. Empirical research demonstrates
that integrating modified SMOTE with NNs enhances
AUC, sensitivity, and Fl-score while maintaining high
overall ACC, thereby promoting model generalization
and predictive performance in small-scale, imbalanced
datasets.

2. Algorithmic Ensemble Techniques

2.1. Bagging: Bagging (bootstrap aggregating) is
an ensemble learning technique that enhances NN
performance in low-data healthcare scenarios by reducing
variance while improving generalization. The method
generates multiple bootstrap samples from the original
dataset and trains separate models on each subset,
aggregating their predictions to produce a final output.
This approach is particularly valuable in various clinical
tasks with small or heterogeneous datasets (e.g., medical
image classification, EHR-based prognosis, and rare
event prediction), where overfitting is a serious concern.
Empirical investigations reveal that combining bagging
with NNs increases ACC, AUC, and Fl1-score, stabilizes
model performance across varied patient cohorts, and
enhances robustness in limited data environments.

2.2. Boosting: It is an ensemble learning technique that
sequentially trains multiple weak learners, typically NNs or
decision trees, to improve predictive performance in low-
data healthcare scenarios. Each successive model focuses
on the errors of its predecessors, thus enhancing the
ability of the network to learn from underrepresented or
difficult-to-classify samples. Several variants of boosting,
including adaptive boosting (AdaBoost), gradient tree
boosting, and XGBoost, have been successfully applied in
clinical settings. AdaBoost iteratively adjusts the weights
of misclassified samples to focus learning on challenging
cases. Moreover, gradient tree boosting builds additive
models in a forward stage-wise fashion to minimize a
differentiable loss function. XGBoost further optimizes
this process through regularization, parallelization,
and handling of missing data, offering state-of-the-art
performance. These methods are particularly effective in
rare disease detection, early-stage condition classification,
and adverse event prediction,, where datasets are small
and imbalanced. Based on empirical research, integrating
these boosting techniques with NNs improves ACC,
AUC, and Fl-score, enhances sensitivity to minority
class events, and provides robust generalization across
heterogeneous patient cohorts, boosting a powerful
approach for limited clinical data.

Data Imbalance

Change Loss Function

1. Assign Weight

In low-data healthcare scenarios, NN performance
can be significantly impacted by class imbalance or
underrepresented outcomes. Assigning class-specific
weights adjusts the contribution of each sample to the

loss function, ensuring that minority or clinically critical
classes exert greater influence during training. Similarly,
modifying the loss function (e.g., using weighted cross-
entropy, focal loss, or cost-sensitive loss) directly
penalizes the misclassification of underrepresented
classes, enhancing model sensitivity. These approaches are
especially effective in early-stage condition classification,
rare disease detection, and adverse event prediction,
where the number of minority samples is limited.
Empirical evidence shows that integrating weighted
training or customized loss functions with NNs improves
Fl1-score, AUC, and sensitivity while keeping the overall
ACC stable, thereby increasing predictive performance
and robustness in small, imbalanced clinical datasets.

Balance the Dataset

1. Up-Sample and Down-Sample

Balancing the dataset is a key strategy to improve
NN performance in low-data healthcare scenarios,
particularly when class imbalance is present. It increases
the number of samples in the minority class, either
through duplication or synthetic data generation,
ensuring that the network adequately learns patterns
from underrepresented classes. conversely , reduces the
number of samples in the majority class to prevent bias
toward overrepresented outcomes. These methods are
especially valuable in extensive clinical tasks (e.g., adverse
event prediction, rare disease detection, and early-stage
condition classification), where minority outcomes are
rare. According to empirical investigations, combining
up-sampling and down-sampling with NNs enhances
AUC, Fl-score, and sensitivity while maintaining stable
overall ACC, thereby improving predictive performance
and model generalization in small-scale, clinically
imbalanced datasets.

Difficulty in Optimizing

Transfer Learning

Transfer learning is a powerful strategy for improving
NN performance in low-data healthcare scenarios
by leveraging knowledge learned from large, related
datasets. Pre-trained models, often trained on general
medical imaging or clinical datasets, can be fine-tuned
on small target datasets to extract relevant feature
representations without requiring extensive labeled data.
This approach is particularly applicable in radiology,
pathology, ophthalmology, and rare disease detection,
where annotated samples are scarce. Empirical evidence
indicates that transfer learning enhances ACC, AUC, and
Fl-score, accelerates convergence, and improves model
generalization, making it a practical and efficient method
for deploying NNs in clinical tasks with limited data
availability.

Problem Reduction
Problem reduction is a strategy employed to improve
NN performance in low-data healthcare scenarios by
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simplifying complex tasks into smaller, more tractable
sub-problems. This approach reduces the effective
dimensionality and complexity of the learning task,
allowing models to focus on essential patterns and
relationships even when labeled data are rare. Techniques
such as multi-stage classification, hierarchical modeling,
and decomposition of multi-class problems into
binary tasks exemplify problem reduction in clinical
settings. Problem reduction is particularly beneficial in
multi-disease diagnosis, rare condition detection, and
longitudinal patient outcome prediction. Empirical
evidence suggests that integrating problem reduction
with NNs enhances F1-score, ACC, and AUC, improves
sensitivity to minority classes, and facilitates model
generalization in small, heterogeneous clinical datasets.

Learning With Less Data

1. Zero-Shot Learning

Zero-shot learning (ZSL) is a technique that enables NNs
to generalize to unseen classes without requiring labeled
examples from those classes during training. In low-data
healthcare scenarios, ZSL leverages semantic information
(e.g., textual descriptions, ontologies, or embeddings of
clinical features) in order to infer relationships between
known and novel classes. This approach is particularly
valuable in rare disease identification, emerging pathogen
detection, and novel condition classification, where
annotated samples are rare or unavailable. Empirical
studies affirm that integrating ZSL with NNs enhances
predictive ACC, AUC, and Fl-score while preserving
robustness and generalization across heterogeneous
patient cohorts, making it a promising strategy for
handling limited and evolving clinical datasets.

2. One-Shot Learning

One-shot learning (OSL) is a method that enables NNs
to learn from a single or very few labeled examples per
class, making it highly suitable for low-data healthcare
scenarios. By leveraging prior knowledge, metric learning,
or embedding spaces, OSL allows models to recognize
new classes based on similarity to previously learned
representations. This approach is especially effective in a
wide variety of clinical tasks (e.g., histopathology image
classification, rare disease diagnosis, and detection of
abnormal physiological patterns), where annotated
samples are extremely limited. Empirical evidence proves
that integrating OSL with NNs improves FI-score,
sensitivity, ACC, and AUC while maintaining robust
generalization across heterogeneous patient cohorts,
providing an efficient strategy for predictive modeling in
small and scarce clinical datasets.

3. Few-Shot Learning

Few-shot learning (FSL) is a strategy that enables NNs
to generalize to new classes with only a few labeled
examples per class, making it especially practical in low-
data healthcare scenarios. FSL leverages meta-learning,

embedding spaces, or metric-learning approaches to
extract transferable knowledge from previously observed
classes, allowing accurate predictions on underrepresented
or novel clinical conditions. This method can be
implemented through data-level approaches, which
augment or reweight limited samples to enhance learning,
and parameter-level approaches, which adapt model
parameters or fine-tune network weights using knowledge
from related tasks. This method is highly relevant in
rare disease diagnosis, early-stage cancer detection, and
identification of unusual physiological patterns, where
annotated data are extremely scarce. Empirical studies
show that integrating few-shot learning with NNs
improves sensitivity, ACC, Fl-score, and AUC while
preserving robust generalization across heterogeneous
patient cohorts, thereby providing an efficient and
practical solution for predictive modeling in small and
imbalanced clinical datasets.

4. Metric Learning

It is a technique that enables NNs to learn a distance
function or similarity metric that captures relationships
between data points, making it particularly suitable in
low-data healthcare scenarios. By mapping samples into
an embedding space where similar instances are closer
and dissimilar ones are farther apart, metric learning
allows models to generalize from limited labeled data
and make accurate predictions on underrepresented or
novel classes. This method is especially relevant in varied
clinical tasks (e.g., rare disease diagnosis, histopathology
image classification, and early detection of uncommon
physiological patterns), where annotated samples are
rare. Empirical findings demonstrate that integrating
metric learning with NNs improves Fl-score, ACC,
sensitivity, and AUC, enhances the discrimination of
minority classes, and provides robust generalization
across heterogeneous patient cohorts, thereby offering a
practical solution for predictive modeling in small and
imbalanced clinical datasets.

5. Neural Turing Machines

Neural Turing machines (NTMs) are considered an
advanced neural architecture that combines an NN
with an external memory module, enabling the system
to store, retrieve, and manipulate information beyond
the immediate training samples. In low-data healthcare
scenarios, NTMs are particularly advantageous because
they can learn algorithms and patterns from limited
labeled data while leveraging memory to generalize to
novel or rare clinical conditions. This approach is highly
relevant in sequential patient monitoring, rare disease
prognosis, and multi-step clinical decision-making,
where annotated data are scarce and complex temporal
dependencies exist. Empirical investigations demonstrate
that integrating NTMs with NNs enhances AUC, ACC,
sensitivity, and F1-score, improves model generalization
across heterogeneous patient cohorts, and provides a

Digital Health Trends Journal. 2025;1(1) | 37



Miandoab and Masoumi

flexible framework for predictive modeling in small,
complex clinical datasets.

Better Optimizing Techniques

1. Meta-Learning

Meta-learning, also known as “learning to learn,” is a
strategy designed to enhance NN performance in low-data
healthcare scenarios by enabling models to rapidly adapt
to new tasks with limited labeled examples. This approach
leverages knowledge acquired from a distribution of
related tasks to optimize the model’s initialization,
learning strategy, or parameter adaptation, allowing
efficient generalization to unseen clinical conditions.
This method is particularly valuable in early-stage cancer
diagnosis, rare disease detection, and personalized
treatment prediction, where annotated data are scarce and
heterogeneous. Empirical studies indicate that integrating
meta-learning with NNs improves ACC, Fl-score,
sensitivity, and AUC, accelerates model convergence, and
enhances generalization across patient cohorts, offering a
robust and practical solution for predictive modeling in
small and imbalanced clinical datasets.

Table 2 summarizes other strategies for managing
limited datasets in healthcare NN applications. Each
method highlights how NNs can efficiently learn from
small or imbalanced datasets, including architectural
modifications, data augmentation, hybrid approaches,
and the use of synthetic or simulated data.

Discussion

This review highlights the increasing relevance of NNs
in healthcare applications where data availability is
frequently constrained. Across diverse domains—ranging
from medical imaging and pathology to genomics and
clinical decision support—NNs have demonstrated
strong performance when tailored strategies are adopted

Table 2. Other Limited Dataset Handling Methods

to mitigate the limitations imposed by small datasets.
Our synthesis underscores that, while CNN architectures
demand large-scale datasets for generalizable learning,
recent methodological innovations enable effective use of
scarce data resources in clinical research.

Consistent with earlier work by Shaikhina and
Khovanova, our findings revealed that small-data
approaches (e.g., dataaugmentation, transfer learning, and
synthetic data generation) are indispensable for ensuring
model robustness in healthcare contexts."” More recent
research has further validated the value of GANs and
Bayesian neural architectures in overcoming data scarcity,
particularly in medical imaging classification.'*” These
findings align with our results, showing that imaging-
intensive domains preferentially adopt augmentation,
transfer learning, and GAN-based synthesis to expand
training corpora and enhance diagnostic ACC.

Strategies such as weak supervision, semi-supervised
learning, and contrastive pretraining were dominant in
text-based and tabular-based healthcare applications.
These approaches allow models to leverage large pools of
unlabeled data, thereby reducing dependency on costly
expert annotations. Similar trends have been reported in
clinical natural language processing, where transformer-
based architectures with prompt tuning have improved
phenotyping and cohort identification despite sparse
datasets.'>'>?"?2 The convergence of our findings with
these reports suggests that semi-supervised paradigms
will play a central role in scaling NN applications to
under-resourced healthcare settings.

A critical challenge identified across domains is the issue
of class imbalance, which compromises predictive validity
in rare-event detection tasks (e.g., arrhythmia monitoring
or intensive care unit event forecasting). Our review
confirmed the widespread adoption of cost-sensitive
learning, focal loss functions, and calibrated thresholds

Method Description

Compact NN architectures
Improved filter initialization
Cross-domain filter learning
Hybrid architectures
Pre-training

Subsequent probability NNs and support
vector machines

Public data annotation
Recursive classification
Synthetic data generation

Simulation-based learning

Designing networks with fewer parameters and shallower depth to efficiently learn from limited data while
distributing relevant information across layers

Using advanced filter initialization techniques to enhance convergence and stability when training on small
datasets

Learning filter patterns from large domain-specific datasets and using them as initial filters for small target
datasets, followed by fine-tuning

Combining NNs with other learning algorithms (e.g., dictionary learning) to enhance feature extraction from
limited data

Training networks on related tasks or datasets before the target task, enabling faster convergence and improved
generalization

Using probability density function classifiers, including Gaussian and Gaussian mixture models, multilayer
perceptrons, radial-basis function networks, and boundary-forming classifiers to estimate posterior probabilities
and minimize classification errors

Leveraging publicly available web data and Al-assisted annotation tools (e.g., Supervisely) to create labeled
datasets while considering copyright and licensing restrictions

Transforming complex tasks into multi-level or hierarchical classification problems, applying recurrent or
recursive classifiers to improve learning efficiency

Producing synthetic data using simulation engines or procedural generation techniques to augment limited
datasets, increasing sample diversity and improving model performance

Creating simulated environments for model training, reducing dependency on real-world data, and enabling
learning in rare or hard-to-capture clinical scenarios

Note. NN: Neural network; Al: Artificial intelligence.
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to address this imbalance. Comparable findings were
reported by Bargagna et al and Eshun et al, demonstrating
that Bayesian CNNs can provide calibrated probability
estimates that improve reliability in low-prevalence
clinical scenarios.’*® Thus, our analysis reinforces the
need for methodological innovations that go beyond
simple oversampling and concentrate on improving
probabilistic calibration in limited-data environments.

Another key implication is the shift toward multimodal
integration. Oncology and precision medicine studies
increasingly combine imaging, genomics, and EHRs
within multimodal NN frameworks to compensate for
limited data within any single modality. This conforms
to prior evidence that hybrid architectures, particularly
graph NNs, can effectively integrate heterogeneous
biomedical data sources.®!¢* Such integrative strategies
appear especially promising for personalized medicine,
where small cohort sizes are a common constraint.

Our findings also highlight the role of meta-learning,
one-shot, and few-shot paradigms as emerging solutions
for healthcare applications with extreme data scarcity.
Whiletheseapproachesremainrelativelynascentin clinical
deployment, they mirror successful implementations
in computer vision and speech recognition. ZSL, in
particular, holds promise for the rapid deployment of
diagnostic models across institutions without requiring
local retraining, although concerns regarding model
generalizability and bias remain unresolved.'®***
Interpretively, these comparisons indicate that while
our strategies achieve robust performance in controlled
settings, real-world deployment may require integration
with federated learning to handle federated datasets, a
frontier not fully covered in our review but increasingly
prominent in post-2023 studies.

Despite these strengths, limitations inherent to narrative
reviews must be acknowledged. The heterogeneity of
included studies precluded meta-analysis, potentially
introducing selection bias. In addition, the focus on
English-language publications (2000-2025) prevented
the chance of evaluating non-English or emerging
preprints. Moreover, while performance metrics are
promising, external validation across diverse populations
remains inconsistent, as noted in the systematic reviews
of machine learning in healthcare, which report gaps in
generalizability due to dataset variability.” Accordingly,
future studies should prioritize prospective trials
evaluating hybrid architectures (e.g., NN combined with
graph NNs for multimodal data) and meta-learning for
few-shot scenarios, particularly in underrepresented
domains like remote monitoring. Longitudinal studies
assessing long-term clinical impact (e.g., cost reductions
and patient outcomes) would further validate these
strategies.

Briefly, this review elucidated actionable pathways
for NN deployment in data-limited healthcare contexts,
with interpretations and comparisons affirming their
transformative potential while highlighting avenues for

refinement.

Conclusion

NNs have shown considerable promise for advancing
healthcare analytics, even in contexts where data scarcity is
a critical barrier. This review underscores that innovative
approaches (e.g., transfer learning, data augmentation,
synthetic data generation, weak and semi-supervised
learning, and Bayesian modeling) enable effective model
training with limited datasets. Emerging paradigms (e.g.,
multimodal integration, meta-learning, and few-/zero-
shot techniques) further expand the applicability of NNs
to complex clinical problems where large-scale data are
rarely available. Our synthesis suggests that the successful
deployment of NNs inlow-data environments requires not
only algorithmic innovation but also rigorous validation
strategies, careful management of class imbalance,
and attention to clinical interpretability. When these
methodological considerations are addressed, NNs can
achieve diagnostic and prognostic performance that rivals
or exceeds conventional methods, thereby supporting
personalized medicine and evidence-based decision-
making. Despite these advances, challenges related to
generalizability, reproducibility, and bias remain. Thus,
other studies should set priorities for external validation
across varying populations, harmonized benchmarking
frameworks, and enhanced explainability in order to
strengthen clinical trust. Addressing these gaps will be
essential for ensuring that NNs trained on limited datasets
can be safely and effectively translated into routine
healthcare practice.

Acknowledgements

We would like to express our sincere gratitude to the researchers
and contributors whose valuable work formed the foundation of
this review. In addition, we acknowledge the support of academic
institutions and database providers for granting access to critical
literature.

Authors’ Contribution

Conceptualization: Amir Torab-Miandoab.

Data curation: Amir Torab-Miandoab.

Formal analysis: Amir Torab-Miandoab.

Funding acquisition: Amir Torab-Miandoab, Saeid Masoumi.
Investigation: Amir Torab-Miandoab.

Methodology: Amir Torab-Miandoab.

Project administration: Amir Torab-Miandoab.

Resources: Amir Torab-Miandoab.

Software: Saeid Masoumi.

Supervision: Amir Torab-Miandoab.

Validation: Saeid Masoumi.

Visualization: Saeid Masoumi.

Writing—original draft: Amir Torab-Miandoab, Saeid Masoumi.
Writing—review & editing: Amir Torab-Miandoab, Saeid Masoumi.

Competing Interests
The authors declare that they have no competing interests.

Consent for Publication
Not applicable.

Digital Health Trends Journal. 2025;1(1) | 39



Miandoab and Masoumi

Data Availability Statement
The dataset supporting the conclusions of this article is included
within the article.

Ethical Approval
Not applicable.

Funding
This study was self-funded by the authors and received no external
financial support from any funding organization.

Intelligence Use Disclosure

The authors used ChatGPT Plus software to paraphrase and natively
translate the text of the article. The authors reviewed the text for
accuracy and take full responsibility for the final content.

References

1.

Yang GR, Wang XJ. Artificial neural networks for
neuroscientists: a primer. Neuron. 2020;107(6):1048-70. doi:
10.1016/j.neuron.2020.09.005.

Miikkulainen R, Liang J, Meyerson E, Rawal A, Fink D,
Francon O, et al. Evolving deep neural networks. In: Kozma
R, Alippi C, Choe Y, Morabito FC, eds. Artificial Intelligence
in the Age of Neural Networks and Brain Computing. 2nd ed.
Academic Press; 2024. p. 269-87. doi: 10.1016/b978-0-323-
96104-2.00002-6.

Mijwel MM. Artificial neural networks advantages and
disadvantages. Mesopotamian Journal of Big Data.
2021;2021:29-31. doi: 10.58496/mjbd/2021/006.
Pulvermiiller F, Tomasello R, Henningsen-Schomers MR,
Wennekers T. Biological constraints on neural network models
of cognitive function. Nat Rev Neurosci. 2021;22(8):488-502.
doi: 10.1038/s41583-021-00473-5.

Sharkawy AN. Principle of neural network and its main types. J
Adv Appl Computat Math. 2020;7:8-19. doi: 10.15377/2409-
5761.2020.07.2.

Dastres R, Soori M. Artificial neural network systems. Int ]
Imaging Robot. 2021;21(2):13-25.

Khalilov DA, Jumaboyeva NA, Kurbonova TM. Advantages
and applications of neural networks. Acad Res Educ Sci.
2021;2(2):1153-9.

Ahmed SF, Bin Alam MS, Hassan M, Rozbu MR, Ishtiak T,
Rafa N, et al. Deep learning modelling techniques: current
progress, applications, advantages, and challenges. Artif Intell
Rev. 2023;56(11):13521-617. doi: 10.1007/s10462-023-
10466-8.

Werbos PJ. Why neural networks? In: Handbook of Neural
Computation. 1st ed. CRC Press; 2020.

Wu YC, Feng JW. Development and application of artificial
neural network. Wirel Pers Commun. 2018;102(2):1645-56.
doi: 10.1007/s11277-017-5224-x.

Abdolrasol MG, Hussain SS, Ustun TS, Sarker MR,
Hannan MA, Mohamed R, et al. Artificial neural networks-
based optimization techniques: a review. Electronics.
2021;10(21):2689. doi: 10.3390/electronics10212689.

20.

21.

22.

23.

24.

25.

Abiodun Ol, Jantan A, Omolara AE, Dada KV, Mohamed
NA, Arshad H. State-of-the-art in artificial neural network
applications: a survey. Heliyon. 2018;4(11):e00938. doi:
10.1016/j.heliyon.2018.e00938.

Shahid N, Rappon T, Berta W. Applications of artificial neural
networks in health care organizational decision-making:
a scoping review. PLoS One. 2019;14(2):e0212356. doi:
10.1371/journal.pone.0212356.

Zion I, Ozuomba S, Asuquo P. An overview of neural network
architectures for healthcare. In: 2020 International Conference
in Mathematics, Computer Engineering and Computer Science
(ICMCECS). Ayobo, Nigeria: IEEE; 2020. p. 1-8. doi: 10.1109/
icmcecs47690.2020.246980.

Pandit A, Garg A. Artificial neural networks in healthcare: a
systematic review. In: 2021 11th International Conference
on Cloud Computing, Data Science & Engineering
(Confluence). Noida, India: IEEE; 2021. p. 1-6. doi: 10.1109/
Confluence51648.2021.9377086.

Bhowmik BR, Varna SA, Kumar A, Kumar R. Deep neural
networks in healthcare systems. In: Machine Learning and
Deep Learning in Efficacy Improvement of Healthcare
Systems. CRC Press; 2022. p. 195-226.

Shaikhina T, Khovanova NA. Handling limited datasets
with neural networks in medical applications: a small-data
approach. Artif Intell Med. 2017;75:51-63. doi: 10.1016/j.
artmed.2016.12.003.

Pasini A. Artificial neural networks for small dataset analysis.
J Thorac Dis. 2015;7(5):953-60. doi: 10.3978/j.issn.2072-
1439.2015.04.61.

Bargagna F, De Santi LA, Martini N, Genovesi D, Favilli B,
Vergaro G, et al. Bayesian convolutional neural networks in
medical imaging classification: a promising solution for deep
learning limits in data scarcity scenarios. ] Digit Imaging.
2023;36(6):2567-77. doi: 10.1007/s10278-023-00897-8.
Eshun RB, Bikdash M, Islam AK. A deep convolutional neural
network for the classification of imbalanced breast cancer
dataset. Healthc Anal (N Y). 2024;5:100330. doi: 10.1016/j.
health.2024.100330.

Mazurowski MA, Habas PA, Zurada JM, Lo JY, Baker JA,
Tourassi GD. Training neural network classifiers for medical
decision making: the effects of imbalanced datasets on
classification performance. Neural Netw. 2008;21(2-3):427-
36. doi: 10.1016/j.neunet.2007.12.031.

Aminian K, Ameri S. Application of artificial neural networks
for reservoir characterization with limited data. J Pet Sci Eng.
2005;49(3-4):212-22. doi: 10.1016/j.petrol.2005.05.007.
Goh AT, Kulhawy FH. Neural network approach to model
the limit state surface for reliability analysis. Can Geotech J.
2003;40(6):1235-44. doi: 10.1139/t03-056.

Thorpe M, van Gennip Y. Deep limits of residual neural
networks. ArXiv [Preprint]. October 28, 2018. Available from:
https:/arxiv.org/abs/1810.11741.

Zhang Z, Zohren S, Roberts S. DeepLOB: deep convolutional
neural networks for limitorder books. IEEE Trans Signal Process.
2019;67(11):3001-12. doi: 10.1109/tsp.2019.2907260.

40

| Digital Health Trends Journal. 2025;1(1)


https://doi.org/10.1016/j.neuron.2020.09.005
https://doi.org/10.1016/b978-0-323-96104-2.00002-6
https://doi.org/10.1016/b978-0-323-96104-2.00002-6
https://doi.org/10.58496/mjbd/2021/006
https://doi.org/10.1038/s41583-021-00473-5
https://doi.org/10.15377/2409-5761.2020.07.2
https://doi.org/10.15377/2409-5761.2020.07.2
https://doi.org/10.1007/s10462-023-10466-8
https://doi.org/10.1007/s10462-023-10466-8
https://doi.org/10.1007/s11277-017-5224-x
https://doi.org/10.3390/electronics10212689
https://doi.org/10.1016/j.heliyon.2018.e00938
https://doi.org/10.1371/journal.pone.0212356
https://doi.org/10.1109/icmcecs47690.2020.246980
https://doi.org/10.1109/icmcecs47690.2020.246980
https://doi.org/10.1109/Confluence51648.2021.9377086
https://doi.org/10.1109/Confluence51648.2021.9377086
https://doi.org/10.1016/j.artmed.2016.12.003
https://doi.org/10.1016/j.artmed.2016.12.003
https://doi.org/10.3978/j.issn.2072-1439.2015.04.61
https://doi.org/10.3978/j.issn.2072-1439.2015.04.61
https://doi.org/10.1007/s10278-023-00897-8
https://doi.org/10.1016/j.health.2024.100330
https://doi.org/10.1016/j.health.2024.100330
https://doi.org/10.1016/j.neunet.2007.12.031
https://doi.org/10.1016/j.petrol.2005.05.007
https://doi.org/10.1139/t03-056
https://arxiv.org/abs/1810.11741
https://doi.org/10.1109/tsp.2019.2907260

