
Background 
Cancer encompasses a highly heterogeneous group of 
diseases characterized by uncontrolled cell proliferation, 
local tissue invasion, and—at advanced stages—distant 
metastasis.1 Despite remarkable advances in molecular 
biology and clinical oncology, cancer remains one of the 
leading causes of morbidity and mortality worldwide, 
imposing a profound burden on public health systems.2 
For example, breast cancer (BC) is currently the most 
prevalent malignancy among women and accounts for 
approximately 16% of global female cancer deaths.3 
The clinical complexity of cancer arises not only from 
its potential to affect virtually any organ but also from 
extensive inter-tumoral and intra-tumoral heterogeneity, 
which continues to challenge both early detection and 
effective treatment strategies.4

Conventional diagnostic and therapeutic modalities, 
while improving survival in certain cancer types, are 
insufficient to comprehensively address this heterogeneity.5 
This limitation has driven the paradigm shift toward 
personalized medicine, which emphasizes tailoring 

diagnostic and therapeutic approaches to the unique 
molecular, genetic, and clinical characteristics of each 
patient rather than applying uniform, population-based 
protocols.6,7 Closely aligned with this concept, precision 
medicine seeks to stratify patients into well-defined 
molecular subgroups in order to better predict disease 
course and optimize therapeutic response.8 Overall, these 
approaches promise to enhance clinical outcomes while 
minimizing unnecessary toxicity.9

The successful realization of personalized oncology 
critically depends on the ability to integrate and 
interpret vast, multidimensional datasets.10 Advances in 
bioinformatics, clinical informatics, and computational 
oncology have provided the essential infrastructure 
to transform raw genomic, proteomic, radiologic, and 
clinical data into actionable clinical knowledge.11 In 
addition, artificial intelligence (AI) and machine learning 
(ML) techniques enable automated analysis of complex 
biomedical data, including high-resolution imaging and 
molecular biomarkers, thereby facilitating individualized 
decision-support systems.12-14 Large-scale initiatives, such 
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Abstract
Cancer remains a global health challenge due to high morbidity, mortality, and tumor heterogeneity. Conventional diagnostic and 
therapeutic approaches are often insufficient, causing a shift in the paradigm toward personalized medicine. Bioinformatics, by 
integrating genomic, transcriptomic, proteomic, imaging, and clinical data, has become pivotal in precision oncology, enabling 
biomarker discovery, individualized therapy, and prognostic assessment. This systematic review followed PRISMA guidelines. 
PubMed, Scopus, Web of Science, and Google Scholar were searched up to May 2025. Eligible studies examined bioinformatics 
applications in cancer diagnosis, prognosis, or treatment personalization. Two independent reviewers performed screening and 
data extraction across 12 domains, including cancer type, study design, tools, findings, and challenges. Narrative synthesis and 
descriptive statistics were applied, and 18 studies from 8,133 records were included. Breast, lung, and liver cancers were most 
frequently investigated, respectively. The United States, Iran, and China were leading contributors. Commonly used platforms 
included TCGA, GEO, ENCODE, Cytoscape, STRING, and Reactome. Key biomarkers were TRIP13, STIL, NTRK2/3, FGFR2, 
VEGFA, and non-coding RNAs. Support vector machines, convolutional neural networks, LASSO regression, and deep learning 
achieved predictive accuracies of 85–95% for tumor subtyping, survival, and treatment response. The integration of multi-
omics and imaging enhanced diagnostic precision and therapeutic stratification. Bioinformatics-driven personalized oncology 
is transitioning into clinical reality, improving biomarker discovery and individualized therapy. However, translation remains 
constrained by data standardization, interoperability, limited genomic diversity, and algorithm interpretability. Future research 
should prioritize explainable AI, federated learning, standardized multi-omic datasets, and international collaboration to ensure 
equitable, reproducible, and clinically meaningful precision oncology.
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as the Cancer Genome Atlas (TCGA) and NIH “All of 
Us” Research Program, have generated unprecedented 
volumes of high-throughput data; however, translating 
these resources into clinically relevant insights remains 
a substantial challenge, often referred to as the 
“knowledge gap”.15,16

Despite numerous promising advances in 
bioinformatics, imaging informatics, and targeted 
therapeutics, their widespread translation of such 
resources into clinical oncology has been slow.17 Barriers 
include poor interoperability among health information 
systems, lack of standardized data formats, concerns 
regarding data privacy, and limited awareness or training 
among healthcare professionals.18-21 Furthermore, the 
existing body of literature lacks a comprehensive synthesis 
of how bioinformatics has been applied to personalized 
cancer medicine, which domains (diagnosis, prognosis, 
and treatment optimization) have been most extensively 
studied, and what critical gaps persist.22

Accordingly, a systematic review of current evidence 
is warranted to evaluate the role of bioinformatics in 
advancing personalized oncology. Such an effort can 
elucidate the state of the field, identify translational 
barriers, and highlight research priorities. Ultimately, 
integrating bioinformatics-driven approaches into 
oncology is expected to accelerate the transition toward 
a healthcare paradigm in which every cancer patient 
receives individualized, biology-informed, and optimally 
effective treatment.

Methods 
Study Design
This study was designed as a systematic review 
conducted in accordance with the guidelines of the 
Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA). The protocol was developed 
prior to the literature search and included predefined 
eligibility criteria, data extraction procedures, and 
analytical strategies to ensure methodological rigor and 
transparency.

Eligibility Criteria
The target population of this review consisted of all peer-
reviewed scientific articles addressing the application of 
bioinformatics in personalized medicine for cancer up 
to April 2025. Studies were included if their full text was 
available (1) and if they were published in English (2), 
explicitly focused on bioinformatics in the context of 
cancer diagnosis, prognosis, or treatment personalization 
(3), and met established quality thresholds based on peer-
reviewed publication and content relevance (4). 

Information Sources and Search Strategy
A comprehensive literature search was performed in 
PubMed, Scopus, and Web of Science from inception until 
May 11, 2025. In addition, Google Scholar was searched 
to minimize publication bias and identify gray literature. 

To capture potentially relevant studies, the reference lists 
of included articles were manually screened, and forward 
citation tracking was performed. Moreover, an automated 
email alert system was established in the databases to 
identify newly published studies during the search period.

The search strategy combined controlled vocabulary 
(e.g., MeSH terms) and free-text keywords in three 
major domains:

(1#): (“Computational Biology” OR “Computational 
Biologies” OR “Computational Molecular Biology” 
OR “Computational Molecular Biologies” OR “Bio-
Informatic” OR “Bio Informatic” OR “Bioinformatic”)

(2#): (“Precision Medicine” OR “P Health” OR “P-Health” 
OR “Individualized Medicine” OR “Personalized 
Medicine” OR Theranostic” OR “Predictive Medicine”)

(3#): (Cancer OR Neoplasm OR Malignant OR 
Malignancy OR Tumor OR Neoplasia OR Malignancies 
OR Benign)
The final search query was (1#) AND (2#) AND (3#).

Study Selection
All retrieved records were imported into EndNote 
reference management software, where duplicates were 
removed. Screening was performed in three stages: title 
screening, abstract screening, and full-text review.

At each stage, two independent reviewers assessed 
eligibility based on the inclusion and exclusion criteria. 
Discrepancies were resolved by consensus or, when 
necessary, by consultation with a third reviewer.

Data Extraction
The required data were extracted using a standardized 
data extraction form designed by the research team. 
The form included 12 domains: authors and year of 
publication, country, type of cancer, study aim, research 
design, bioinformatics tools/approaches, analytical 
methods, key findings, reported challenges, study 
population (demographics), publishing journal, and 
quality assessment.

The form was pretested on a small subset of articles 
and refined accordingly. Additionally, data entry was 
conducted using Microsoft Word and Excel version 2019.

Quality Assessment
To ensure content validity, the extraction form was 
reviewed by two domain experts in bioinformatics and 
health informatics methodology. Each included study 
was independently evaluated by two reviewers for 
methodological rigor and reporting quality. In addition, 
to assess methodological quality and risk of bias (RoB), a 
13-item checklist was utilized, adapted from the QUADAS 
and the QAREL tools.

Data Synthesis and Analysis
The extracted data were analyzed through content 
analysis to identify thematic categories and recurring 
patterns across studies. Descriptive statistics (frequencies, 
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percentages, and cross-tabulations) were computed in 
Microsoft Excel to summarize study characteristics, 
cancer types, bioinformatics tools applied, and reported 
outcomes. Further, trends and distributions were 
visualized using charts and tables.

No meta-analysis was conducted due to the 
heterogeneity of study designs, data sources, and outcome 
measures. Instead, a narrative synthesis was undertaken to 
integrate findings, highlight advances in bioinformatics-
driven personalized oncology, and identify persisting gaps 
and challenges.

Results 
The initial database search retrieved 8,133 records. Overall, 
3,421 unique articles remained after duplicate removal. 
Title screening by two independent reviewers excluded 
3,012 records as irrelevant to the study scope, leaving 
409 articles for abstract evaluation. Following abstract 
screening, 226 studies were excluded for not meeting 
the eligibility criteria. A total of 183 full-text articles 
were assessed, of which 165 were excluded after detailed 
evaluation. Ultimately, 18 studies met all the inclusion 

criteria and were included in the final synthesis (Figure 1).
Most studies had been conducted in hospital or 

clinical settings, reflecting the translational application of 
bioinformatics in real-world oncology practice. BC was the 
most frequently investigated malignancy, followed by lung 
cancer and liver cancer, highlighting their prominence in 
bioinformatics-based oncology research. The other cancer 
types, including gastric, ovarian, pancreatic, and head and 
neck cancers, were less frequently represented. In terms 
of geographic distribution, the United States contributed 
the largest number of studies, followed by Iran and 
China, with additional contributions from multinational 
collaborations, as well as Taiwan, Turkey, Singapore, 
and India. This distribution underscores the global 
engagement in bioinformatics-driven cancer research and 
the dominance of research output from high-resource 
settings (Figure 2).

The word cloud (Figure 3) illustrates the most frequently 
occurring terms across the included studies, demonstrating 
the central themes and methodological focuses in 
bioinformatics-driven oncology research. Prominent 
terms, such as “expression,” “analysis,” “medicine,” and 

Figure 1. PRISMA Flow Diagram. Note. PRISMA: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses

Figure 2. (A) Geographical Scope in the Subject of Bioinformatics in Personalized Medicine for Cancer and (B) The Growth Trend of Articles in the Field of 
Bioinformatics in Personalized Medicine for Cancer in Databases
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“learning,” highlight the dominant role of gene expression 
profiling, computational analysis, and ML in precision 
cancer medicine. Repeatedly reported molecular targets 
included TRIP13, STIL, NTRK2/3, FGFR2, and VEGFA, 
as well as regulatory non-coding RNAs (ncRNAs), such 
as miR-21 and miR-145, underscoring their recurrent 
significance as diagnostic and prognostic biomarkers.

The visualization also emphasizes the widespread use of 
public genomic repositories and bioinformatics platforms, 
with TCGA, GEO, ENCODE, GTEx, UCSC, ICGC, and 
KEGG appearing as the most cited resources. Analytical 
pipelines and tools, such as Cytoscape, STRING, 
DAVID, Reactome, GSEA, Oncomine, and TumorScope, 
were also prominently represented, representing their 
application in pathway enrichment, network analysis, and 
predictive modeling.

Additionally, ML algorithms, including support vector 
machine (SVM), convolutional neural network (CNN), 
least absolute shrinkage and selection operator (LASSO), 
and deep learning approaches, were frequently mentioned, 
supporting their growing role in survival prediction, 
treatment response modeling, and tumor subtyping. 
The diversity of terms related to data reproducibility, 
integration, and open-source platforms indicates an 
increasing focus on standardization and accessibility 
in the field.

Overall, the word cloud demonstrates that 
bioinformatics research in oncology is characterized 
by a strong reliance on large-scale genomic data, ML 
algorithms, and integrative analytic frameworks, with the 
ultimate goal of advancing biomarker discovery, treatment 
personalization, and early cancer detection.

The analysis of the included studies revealed diverse 
research foci. The most common themes were as follows:
•	 Bioinformatics networks in cancer diagnosis and 

personalized medicine support, including integration 
with electronic health records to enhance patient care 
and safety

•	 Identification and validation of biomarkers, 
particularly involving ncRNAs, the miR-200 family, 
and related gene targets.

•	 Development of bioinformatics-driven approaches 
for drug selection, therapeutic optimization, and 

prediction of treatment outcomes
•	 Application of AI and ML for cancer detection, 

gene expression profiling, biomarker discovery, and 
predictive modeling

•	 Integration of genomic, transcriptomic, and imaging 
data to improve diagnostic accuracy and prognostic 
assessment

•	 Enhancement of personalized treatment strategies, 
including targeted drug selection, improved 
biomarker-based stratification, and quality-of-life 
improvement for cancer patients.

The reviewed studies employed a variety of 
bioinformatics processes, including:
•	 Algorithm development and computational 

modeling;
•	 Prediction of therapeutic response and treatment 

outcomes;
•	 Clinical validation and data standardization;
•	 Systems biology approaches to signaling pathways 

and therapeutic target identification;
•	 Design of integrative multi-omics databases;
•	 Automated imaging analysis and structural genomics;
•	 ML–based models for prognosis and treatment 

planning.
A recurrent theme was the emphasis on data integration 
across multiple layers (genomic, clinical, and imaging), 
highlighting the potential and challenges of multi-modal 
bioinformatics in oncology.
Despite promising advances, several challenges were 
consistently reported, including:
•	 Interoperability and standardization issues across 

health information systems;
•	 Regulatory and privacy concerns related to clinical 

and genomic data;
•	 Limited clinical adoption of bioinformatics tools due 

to technical complexity and insufficient training of 
healthcare professionals;

•	 Need for international collaboration and large-scale 
data sharing to enable robust, generalizable findings.

Table 1 presents further details of the included studies, 
including authors and year, country, aim of research, 
type of cancer, bioinformatics aspects, setting, included 
processes, methods, key findings, challenges, and 

Figure 3. Word Cloud of Key Terms Extracted From the Included Studies
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Table 1. Details of the Selected Studies in This Review

Authors and 
Year

Country Aim of research Type of cancer
Bioinformatics 

aspects
Setting Included processes Methods Key findings Challenges Demographics

Iolanda Capone 
et al., 2022 23 Italy

Evaluation of bioinformatics 
tools for identifying fusion 

transcripts

Multiple (STT, 
lung, thyroid, 
and the like)

ADx, ARR, and 
SFU for RNA-seq 

from FFPE

Institutional 
Molecular Tumor 

Board

RNA extraction, 
RNA-seq, and fusion 

analysis

FusionPlex, FISH, 
RT-PCR, ADx, ARR, 

and SFU

High accuracy in STT; 
more suitable ARR in 

carcinoma.

Low RNA quality in 
FFPE and discrepancy 

with FISH

190 patients, 193 
FFPE samples

Khorasani, 
Shahbazi, 
Mahdiyan - 
2018 24

Iran
Investigation of miR-200 and 

target genes in prostate cancer
Prostate cancer

miRWalk, 
TargetScan, 
DAVID, and 
Cytoscape

In silico study
KEGG pathway 

analysis and gene 
targeting

Bioinformatics 
databases, network 

drawing, and 
performance analysis

E2F3, BCL2, and 
CCNE2 are the main 

targets.

The lack of data for 
some miRNAs leads to 

false results.

Without human 
population (data 

analysis)

Zurita AJ et al., 
2020 25 USA

Evaluation of the use of 
HD-SCA technology for the 
identification, imaging, and 

biological-informational 
analysis of circulating tumor 
cells (CTCs) in the biological 

fluid of cancer patients

Breast, lung, 
prostate, and 

the like

ImageJ, 
Python, CTC 

morphometrics, 
and RNA-seq

USC Convergent 
Science Institute in 

Cancer

CTC isolation, 
staining, imaging, and 

analysis

HD-SCA, confocal 
microscopy, and 
single-cell RNA

Predicting treatment 
response through CTC 

analysis

Phenotypic diversity of 
CTC and difficulty in 

identification

129 NSCLC 
patients in one 
study, others 

different

Cheng, Moore, 
Greene – 2014 
26

USA
The application of 

bioinformatics in the analysis 
of ncRNAs

Not cancer-
specific 

(lncRNAs 
general)

Guilt-by-
association, tiling 
arrays, and RNA-

seq

Pacific Symposium 
on Biocomputing

Analysis of the 
structure, function, 
and localization of 

ncRNA

Machine learning 
models and analysis 
of the miRNA target

The extensive regulatory 
role of lncRNA in 

cancer

The statement below, 
lack of ML training 

data, and high 
diversity

Without a specific 
population; public 

bases.

Cheng et al., 
2016 27 USA

Off-label drug suggestion in 
TNBC with ML

Triple negative 
BC

SVM, TCGA, 
CCLE, CTRP, and 

fusion data

Analysis of public 
data

GE, CNV, Mutation, 
and drug sensitivity 

analysis

SVM, AUC, KEGG, 
DAVID, and target 
matching algorithm

71.8% of patients 
have a treatment goal; 
Methotrexate, Olaparib

Elimination of 
potential goals and 

activating leaps

85 TNBC patients 
(TCGA), 18 cell 

lines

Ow, Tang, 
Kuznetsov – 
2016 28

Singapore
Prediction of prognosis with 

PBVV and PSV models in 
HGSC

High-grade 
serous ovarian 

cancer

PBVV, PSV, 
TCGA, GEO, 
and Euclidean 

distance

Bioinformatics 
Institute, Singapore

Expression 
binarization, patient 

comparison

1D-DDg, SWVg, 
AWR, and Kaplan–

Meier

PSV has higher 
accuracy in prediction 

compared to PBVV.

Need for precise 
normalization, 

challenging feature 
selection

TCGA (350), 
GSE9899, and 

GSE26712 (359)

Sinnarasan et 
al., 2023 29 India

Identification of biomarkers for 
stomach cancer using ML

Gastric cancer

DESeq2, 
Cytoscape, SVM-
RFE, TCGA, and 

GEPIA

Pondicherry 
University

RNA-seq, DEG, PPI, 
ROC, and survival

SVM-RFE, STRING, 
GEPIA, and 

ClusterProfiler

TRIP13, KIF14, 
DTL, and EXO1 as 

biomarkers

Lack of clinical 
variables and 

insufficient laboratory 
confirmation

TCGA (407), 
PRJNA435914 (68), 
and PRJNA555737 

(12)

Lai et al., 
2024 30 China

A risk model for aging in LIHC 
using SRGs

Liver 
hepatocellular 

carcinoma

DESeq2, LASSO, 
KEGG, GO, and 

nomogram
Jinan University

Identification of SRGs, 
survival analysis, and 

model building

LASSO, Kaplan–
Meier, Cox, ROC, 

and DCA

SOCS2, IGFBP3, and 
RACGAP1 are key 

biomarkers.

Need for more 
validation and limited 

generalizability

TCGA-LIHC (424) 
and PAAD (183)

Mohammadi et 
al., 2025 31

Iran
Evaluation of NTRK family 

in BC
BC

UALCAN, KM-
plotter, STRING, 

Enrichr, and 
DGIdb

Iranian academic 
centers

Gene expression, 
genome alteration, 

survival, and targeted 
drugs

Welch t-test, 
log-rank, and 

bcGenExMiner

NTRK2/3 above 
expression = better 

prognosis

Tumor heterogeneity 
and need for in vivo 

validation

TCGA: 1101 
patient

Ronquillo & 
Lester – 2022 32

USA
Precise medical status and 

genomic testing in All of Us

Multiple 
(breast, 

prostate, blood, 
and the like)

LOINC, OMOP, 
Python, R, and 

Jupyter
NIH All of Us

Extraction of genomic 
test data and their 

analysis

EHR mining and 
LOINC classification

Only 5.2% of cancer 
patients underwent 

genomic testing.

Lack of structural 
data and low racial 

diversity

5,678 cancer 
patients out of 

315,297 people

Su et al., 
2025 33 China

KRAS-wild-type profile in 
pancreatic cancer for precision 

treatment

KRAS wild-type 
pancreatic 

cancer

NGS (831 genes), 
RNA-seq, and 
CIBERSORT

Harbin Medical 
University

Jump analysis, fusion, 
treatment response, 

and survival

Hisat2, maftools, 
Kaplan–Meier, and 

IOBR

HRD related to 
platinum response and 

treatable fusions

Low validation 
without matched 
blood samples.

34 patients; 73.5% 
under 65 years old, 

different stages
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Authors and 
Year

Country Aim of research Type of cancer
Bioinformatics 

aspects
Setting Included processes Methods Key findings Challenges Demographics

Vakili et al., 
2024 34

Canada, 
Portugal, 
KSA, and 
Poland

A comprehensive medical 
review in head and neck 
cancer with emphasis on 

miRNA

Head and 
neck cancer 

(HNSCC)

OncoMiR, GEO, 
DEGs, KEGG, 

TGF-β, and AI/ML

Collaborative 
international 

review

Review of miRNA, 
pathway, HPV, and 

EGFR

OncoMiR, meta-
analysis and in silico 

validation

miR-21, miR-155, 
miR-145, and EGFR 

biomarkers

Lack of 
standardization of 

miRNA data

Multiple studies 
with hundreds of 
HNSCC patients

Lin et al., 2022 

35
Taiwan

AI in precision medicine to 
improve cancer treatment

Multiple 
(colorectal, 

ovarian, lung, 
and skin)

AI, ML/DL, NLP, 
REVEL, DRAGEN, 

and QOCA
NCKU Hospital

NGS, RNA-seq, 
mutation signature, 

and single-cell model

CNN, SVM, 
CADD, UMAP, and 

DeconstructSigs

AI has improved 
prediction and the 

accuracy of treatment.

Complex 
interpretation of 

single-cell data, defect 
in EHR

Taiwanese patient 
data and TCGA

Agaoglu et al., 
2022 36 Turkey

Differences in the 
interpretation of hereditary 
cancer variants between BIs 

and CGs

Hereditary 
cancers

SIFT, PolyPhen, 
ACMG, and 

SOPHiA DDM

University of 
Health Sciences, 

Turkey

NGS for 27 genes, 
comparing the 

interpretation of 
variants

ACMG criteria, PP3, 
PM1, and PP5

22.5% Disagreement; 
Conflicting Criteria

Lack of clinical data 
by BIs

285 patients; age: 
46; 251 women

Winterhoff et 
al., 2022 37

USA and 
Germany

A molecular model for 
Bevacizumab response in 

ovarian cancer

Epithelial 
ovarian cancer

SVM, microarray, 
HITON-PC, 
MFAP2, and 

VEGFA

ICON7/OVAR-11 
RCT, 2000 patients

RNA extraction, 
modeling, and 

validation

SVM, Cox 
regression, and 

NNFCV

A prediction of 10 
months of additional 

survival for responders.

The complexity of the 
model requires phase 

III validation.

RCT with 
2,000 patients 
with complete 

information

Peterson et al., 
2023 38 USA

Prediction of NAT response in 
BC with a 4D model

Early BC
CNN (ResVNet), 

MRI, and 
pharmacokinetics

SimBioSys, 
Cincinnati 
University

MRI, segmentation, 
and response 

modeling

ROC, AUROC, Log-
rank, and MAE

91.2% accuracy in 
predicting pCR

No examination of 
the lymph node and 

limited MRI

80 patients, mixed 
ethnicity, TNBC 

22.5%

Jia et al., 
2020 39 China

Identification of specific 
Luminal A and Basal-like 

genes

Luminal A, 
basal-like BC

Limma, edgeR, 
PPI, Cytoscape, 
KEGG, and GO

Inner Mongolia 
Medical University

Analysis of DEGs, PPI 
network, and gene 

survival

MCODE, 
cytoHubba, and 
PROGgeneV2

NMUR1, CDC7, and 
STIL are key genes.

Lack of laboratory 
validation

TCGA: 439 
samples

Mokhtari et al., 
2023 40

Iran and 
USA

BMC3PM for precise drug 
combination in BC

BC
Limma, CMAP, 
KEGG, IPPGE, 

and PHM

University of 
Tehran, Duke, and 

the like

RNA array, 
constructing the 

IPPGE profile, and 
health matrix

Spearman, 
KEGGgraph, and DC 

algorithm

β group drug 
combinations were 

more effective.

Lack of laboratory 
validation and data 

difference

6,173 patients 
and 312 healthy 

individuals , from 
GEO

Note. ncRNA: Non-coding ribonucleic acid; TNBC: Triple-negative breast cancer; ML: Machine learning; AI: Artificial intelligence; HGSC: High-grade serous carcinoma; LIHC: Liver hepatocellular carcinoma; SRG: Survival/senescence-related gene; 
NTRK: Neurotrophic tyrosine receptor kinase; miRNA: Micro ribonucleic acid; BI: Bioinformaticians; CG: Clinical geneticist; NAT: Neoadjuvant therapy; BMC3PM: Bioinformatics multidrug combination protocol for personalized precision medicine; 
STT: Soft tissue tumor; LncRNA: Long non-coding ribonucleic acid; KRAS: Kirsten rat sarcoma viral oncogene homolog; HNSCC: Head and neck squamous cell carcinoma; FFPE-RNA seq: Formalin-fixed paraffin-embedded ribonucleic acid sequencing; 
SVM: Support vector machine; TCGA: Cancer Genome Atlas; CCLE: Cancer Cell Line Encyclopedia; CTRP: The Cancer Therapeutics Response Portal; GEO: Geographic or geospatial; RFE: Recursive feature elimination; LASSO: Least absolute shrinkage 
and selection operator; KEGG: Kyoto Encyclopedia of Genes and Genomes; GO: Gene ontology; UALCAN: The University of Alabama at Birmingham CANcer data analysis portal; KM-plotter: Kaplan-Meier Plotter; STRING: Search Tool for the Retrieval 
of Interacting Genes/Proteins; DGIdb: Drug-Gene Interaction Database; OMOP: The Observational Medical Outcomes Partnership; CIBERSORT: Cell-type identification by estimating relative subsets of RNA transcripts; TGF-β: Transforming growth 
factor-beta; DL: Deep learning; NLP: Natural language processing; REVEL: Rare Exome Variant Ensemble Learner; DRAGEN: Dynamic Read Analysis for GENomics; SIFT: Sorting Intolerant From Tolerant; PolyPhen: Polymorphism phenotyping; DDM: 
Data-driven machine; HITON-PC: Parents and children; MFAP2: Microfibrillar-associated protein 2; VEGFA: Vascular endothelial growth factor A; CNN (ResVNet): Convolutional neural network; edgeR: Empirical Analysis of Digital Gene Expression 
Data in R; CMAP: Connectivity map; PHM: Primary health matrix; USC: University of Southern California; NIH All of Us: The All of Us Research Program, a long-term research initiative by the National Institutes of Health; NCKU Hospital: National 
Cheng Kung University Hospital; ICON7: The International Collaboration on Ovarian Neoplasms 7; RCT: Randomized controlled trial; GE: Gene expression; CNV: Copy number variation; HPV: Human papillomavirus; EGFR: Epidermal growth factor 
receptor; NGS: Next-generation sequencing; MRI: Magnetic resonance imaging; DEG: Differentially expressed gene; PPI: Protein-protein interaction; IPPGE: Immunofixation and protein electrophoresis; FISH: Fluorescence in situ hybridization; RT-
PCR: Real-time polymerase chain reaction; ADx: Advanced diagnostics; ARR: Arriba; SFU: STAR-fusion; HD-SCA: High-definition or high-dimensional single-cell analysis; AUC: Area under the curve; DAVID: The Database for Annotation, Visualization, 
and Integrated Discovery; 1D-DDg: One-dimensional data-driven grouping; SWVg: Statistically weighted voting grouping; AWR: Advantage-weighted regression; STRING: Search Tool for the Retrieval of Interacting Genes/Proteins; GEPIA: Gene 
Expression Profiling Interactive Analysis; ROC: Receiver operating characteristic; DCA: Decision curve analysis; EHR: Electronic health record; LOINC: Logical Observation Identifiers Names and Codes; Hisat2: Hierarchical Indexing for Spliced 
Alignment of Transcripts 2; IOBR: Immuno-oncology biological research; OncoMiR: Oncogenic micro ribonucleic acid; CADD: Combined Annotation-Dependent Depletion; UMAP: Uniform manifold approximation and projection; ACMG: the 
American College of Medical Genetics and Genomics; NNFCV: Nested N-fold cross-validation; AUROC: Area under the receiver operating characteristic curve; MAE: Mean absolute error; MCODE: Molecular complex detection; DC: Difference of 
convex; ARR: Absolute risk reduction; E2F3: Early 2 Factor transcription factor 3; BCL2: B-cell lymphoma 2; CCNE2: Cyclin E2; PSV: Prognostic signature vector; PBVV: Prognostic binary variable vector; TRIP13: Thyroid hormone receptor interactor 13; 
KIF14: Kinesin family member 14; DTL: Denticleless E3 ubiquitin protein ligase homolog; EXO1: Exonuclease 1; SOCS2: Suppressor of cytokine signaling 2; IGFBP3: Insulin-like growth factor binding protein-3; RACGAP1: Rac guanosine triphosphate-
activating protein 1; HRD: Homologous recombination deficiency; pCR: Pathologic complete response; NSCLC: Non-small cell lung cancer; BC: Breast cancer; PAAD: Pancreatic adenocarcinoma.

Table 1. Continued.
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demographics.
The quality of the 18 studies included in this systematic 

review was evaluated using an integrated approach 
combining the QUADAS-2 and QAREL tools. Table 2 
provides a comprehensive summary of RoB, applicability 
concerns, and reliability for each study. All studies were 
considered to have low RoB across the QUADAS-2 
domains, including patient selection, index test, reference 
standard, and flow and timing. Similarly, applicability 
concerns were minimal, indicating that the included 
studies were methodologically appropriate and relevant to 
the research objectives. The QAREL assessment confirmed 
acceptable reliability for all studies, demonstrating that 
the study populations, examiners, test procedures, and 
statistical analyses were appropriate, reproducible, and 
consistently reported. Moreover, the Notes column 
highlights the methodological strengths of each study, such 
as the use of real clinical samples, multi-cohort validation, 
robust in silico analyses, and advanced bioinformatics and 
ML approaches. Overall, this quality assessment supports 
the inclusion of all studies in the review and indicates that 
the findings derived from these studies are reliable and 
methodologically sound. The integration of both tools 
provides a robust framework to ensure that the evidence 
synthesized in this review is based on high-quality and 
reproducible research.

Across the included studies, a consistent focus was 
placed on the identification of cancer-related genes and 
regulatory molecules, such as TRIP13, STIL, NTRK2/3, 
FGFR2, VEGFA, miR-21, and miR-145, which were 
reported as diagnostic or prognostic biomarkers in 
multiple tumor types, including breast, liver, gastric, and 
ovarian cancers. More than twelve studies specifically 
investigated these targets, highlighting their potential role 
in precision oncology.

In addition, ML approaches were widely applied, with 
over half of the studies employing at least one algorithm. 
Several methods (e.g., SVM, convolutional neural networks, 
LASSO, and deep neural networks) demonstrated strong 
predictive performance. Reported accuracies ranged from 
85% to 95% for predicting treatment response, overall 
survival, or tumor subclassification. For example, the 
TumorScope model was evaluated in BC for predicting 
therapeutic response, while a LASSO-based model 
showed prognostic utility in liver cancer.

Several studies integrated genomic analyses into 
treatment selection strategies, including the use of 
combinatorial drug approaches in the BMC3PM 
framework and off-label drug recommendations for 
triple-negative BC. The findings consistently supported 
the role of bioinformatics in tailoring therapeutic options 
to individual molecular profiles. Furthermore, specific 
studies (e.g., Agaoglu et al36) emphasized variability 
in genetic variant interpretation among clinicians, 
underscoring the need for standardized frameworks.

Challenges related to data quality and accessibility were 
recurrent. For instance, Ronquillo et al32 reported that 

only 5.2% of participants in the All of Us program had 
available genomic data, and multiple studies noted the 
lack of structured or standardized datasets. Most datasets 
originated from large public repositories (e.g., TCGA, 
GEO, and ENCODE), which predominantly represent 
Western populations. Laboratory-based analyses 
constituted the primary research setting.

Notably, the integration of genomic, clinical, and imaging 
data was shown to improve diagnostic accuracy and 
enhance clinical decision-making, particularly in studies 
from Taiwan and the United States employing hybrid 
AI frameworks. Novel therapeutic opportunities were 
also reported: for example, FGFR2 fusions in pancreatic 
cancer and biomarkers in KRAS-wild-type tumors were 
suggested as potential candidates for targeted therapy.

Collectively, the evidence indicates that bioinformatics 
offers powerful tools for identifying novel therapeutic 
targets, predicting treatment outcomes, and supporting 
precision medicine approaches in oncology. However, 
progress is limited by a number of challenges, such as a lack 
of structured data, insufficient algorithm interpretability, 
and restricted access to genomic datasets, highlighting the 
necessity of standardized infrastructures and international 
data-sharing initiatives.

Discussion
This review underlines the rapid evolution of bioinformatics 
and precision oncology, where advances in AI, ML, and 
integrative multi-omics are reshaping cancer diagnosis, 
prognosis, and therapeutic decision-making. Recent 
studies underscore the transformative role of combining 
genomics and AI to enable early detection, drug resistance 
prediction, and targeted therapy design. These approaches 
have demonstrated substantial clinical value, although 
challenges remain regarding data standardization, 
algorithmic interpretability, bias mitigation, and ethical 
governance.41 Furthermore, integrating genomics with 
transcriptomics and proteomics has provided a more 
comprehensive understanding of tumor biology, thereby 
facilitating individualized treatment strategies.42

Advances in genomic bioinformatics have produced 
powerful platforms, including cBioPortal, GDC, GEO, 
and other pathway/network analysis tools, which are 
increasingly employed for biomarker identification and 
detection of cancer driver mutations. Such resources 
are central to tailoring treatments and predicting 
therapeutic response.43 Emerging evidence suggests that 
AI significantly contributes to predicting responses to 
immunotherapy, identifying novel therapeutic targets 
(e.g., lncRNAs), and accelerating the discovery of 
precision oncology drugs. Despite this potential, critical 
issues regarding transparency, reproducibility, and ethical 
implementation persist.44

Integrating diverse molecular layers—including 
genomics, epigenomics, transcriptomics, and 
proteomics—has reinforced the concept of systems 
biology of cancer, yielding novel insights into disease 
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Table 2. Integrated Quality Assessment of Included Studies Using QUADAS-2 and QAREL Tools

Study (Author, Year)
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Notes

Iolanda Capone et al., 
2022 23 Low Low Low Low Low Low Low Low Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Good

Real clinical FFPE samples; validated with reference 
standards

Khorasani, Shahbazi, 
Mahdiyan - 2018 24 Low Low Low Low N/A N/A N/A Low Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Good Robust in silico analysis with validated databases

Zurita AJ et al., 2020 25 Low Low Low Low Low Low Low Low Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Good Imaging and RNA-seq with high accuracy

Cheng, Moore, Greene 
– 2014 26 Low Low Low Low N/A N/A N/A Low Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Good Public datasets; validated ML approaches

Cheng et al., 2016 27 Low Low Low Low Low Low Low Low Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Good Integration of TCGA and CCLE with ML

Ow, Tang, Kuznetsov – 
2016 28 Low Low Low Low Low Low Low Low Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Good Multi-dataset analysis; strong predictive modeling

Sinnarasan et al., 2023 29 Low Low Low Low Low Low Low Low Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Good ML-based biomarker discovery; public dataset validation

Lai et al., 2024 30 Low Low Low Low Low Low Low Low Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Good Multi-cohort survival and risk modeling with LASSO

Mohammadi et al., 
2025 31 Low Low Low Low Low Low Low Low Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Good Comprehensive NTRK evaluation in the TCGA cohort

Ronquillo & Lester – 
2022 32 Low Low Low Low Low Low Low Low Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Good Rigorous EHR mining with LOINC standards

Su et al., 2025 33 Low Low Low Low Low Low Low Low Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Good Broad genomic sequencing; therapeutic correlation

Vakili et al., 2024 34 Low Low Low Low Low Low Low Low Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Good Comprehensive systematic review of miRNAs

Lin et al., 2022 35 Low Low Low Low Low Low Low Low Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Good AI/ML application on multi-cancer datasets

Agaoglu et al., 2022 36 Low Low Low Low Low Low Low Low Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Good Bioinformatics evaluation of hereditary cancer variants

Winterhoff et al., 2022 37 Low Low Low Low Low Low Low Low Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Good Molecular modeling validated in large RCTs

Peterson et al., 2023 38 Low Low Low Low Low Low Low Low Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Good
Advanced 4D modeling with high MRI predictive 
accuracy

Jia et al., 2020 39 Low Low Low Low Low Low Low Low Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Good PPI network-based key gene identification

Mokhtari et al., 2023 40 Low Low Low Low Low Low Low Low Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Good Personalized drug modeling; large GEO datasets

Note. FFPE-RNA-seq: Formalin-fixed paraffin-embedded ribonucleic acid sequencing; TCGA: Cancer Genome Atlas; CCLE: Cancer Cell Line Encyclopedia; LASSO: Least absolute shrinkage and selection operator; NTRK: Neurotrophic tyrosine 
receptor kinase; EHR: Electronic health record; LOINC: Logical Observation Identifiers Names and Codes; miRNA: Micro ribonucleic acid; AI: Artificial intelligence; ML: Machine learning; RCT: Randomized controlled trial; MRI: Magnetic 
resonance imaging; PPI: Protein-protein interaction; GEO: Geographic or geospatial.
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heterogeneity and treatment response 45. Recent reviews 
have highlighted how AI can improve the integration 
of multi-omics data into pharmacological workflows, 
supporting drug prioritization and optimizing therapeutic 
choices.46 Additionally, novel directions in oncology 
bioinformatics (e.g., counterfactual ML frameworks) 
offer interpretable and trustworthy treatment 
recommendations, bridging the gap between algorithmic 
predictions and clinical decision-making.47 Moreover, 
federated learning has emerged as a promising approach 
for enabling collaborative research across multiple centers 
while preserving patient privacy, although reproducibility 
and harmonization remain challenges.48

A critical component of evaluating the robustness and 
translational potential of these approaches lies in the 
assessment of study quality. In this review, all included 
studies demonstrated low RoB and high applicability 
across QUADAS-2 domains, indicating rigorous 
patient selection, well-validated index tests, and reliable 
reference standards. In addition, most studies adhered 
to methodological best practices, including appropriate 
statistical analyses, blinded interpretation, and 
standardized examiner training, as reflected by consistent 
“Yes” responses across Q1–Q10 questions and “Good” 
overall QAREL reliability. Notably, the studies utilized 
diverse but high-quality datasets (i.e., clinical FFPE 
samples, public multi-omics repositories, imaging data, 
and robust in silico analyses), enhancing the credibility and 
generalizability of the findings. Furthermore, the low RoB 
across these studies supports the reliability of conclusions 
drawn regarding biomarker identification, ML-based 
treatment modeling, and multi-omics integration.

The findings of the present work closely align with 
these emerging trends in precision oncology. Specifically, 
the identification of key biomarkers, such as miR-21 
and NTRK2/3, underscores the growing importance 
of advanced bioinformatics platforms in biomarker 
discovery.43 Similarly, the application of ML for modeling 
treatment response parallels recent efforts in AI-driven 
prediction of immunotherapy outcomes and drug 
sensitivity.41,44 Furthermore, the study’s emphasis on 
integrating genomic, imaging, and clinical data conforms 
to the multi-omics paradigm, which is increasingly 
recognized as the cornerstone of precision oncology.45,46 
Models such as BMC3PM exemplify the development of 
counterfactual treatment recommendation frameworks 
designed to provide interpretable and clinically relevant 
decision support.47 Considerations related to data 
sharing and patient privacy correspond to the adoption 
of federated learning approaches in oncology.48 Finally, 
the predictive modeling of therapy response contributes 
to the broader movement toward AI-based adverse drug 
reaction prediction and personalized treatment selection.49

To further enhance the clinical utility and translational 
impact of such approaches, future research should 
focus on several key directions. First, the incorporation 
of federated and privacy-preserving ML frameworks 

is essential to enable multi-center validation without 
compromising patient confidentiality. Equally important 
is the advancement of explainable AI (XAI) methodologies 
to ensure that predictions remain interpretable and 
actionable for clinicians and patients. In addition, 
strengthening reproducibility and standardization 
through the use of large-scale, multi-omic, and multi-
institutional datasets will be critical for achieving robust 
and generalizable findings. Ultimately, careful attention 
must be given to ethical and regulatory considerations 
to promote equitable and responsible deployment of 
AI-driven precision oncology. The consistently high 
methodological quality of the studies included in this 
review further emphasizes that future work built upon 
rigorous and transparent study designs is likely to yield 
clinically meaningful and trustworthy insights.

Conclusion
This systematic review demonstrated that bioinformatics 
has become a cornerstone of personalized oncology by 
enabling the integration of genomic, transcriptomic, 
proteomic, and imaging data into clinically actionable 
insights. Across the 18 included studies, consistent 
advances were identified in biomarker discovery (e.g., 
TRIP13, STIL, NTRK2/3, VEGFA, miR-21, and miR-145), 
ML–based predictive modeling, and bioinformatics-driven 
therapeutic optimization. These findings underscore 
the central role of computational tools in enhancing 
early detection, refining prognosis, and tailoring cancer 
treatment to the molecular and clinical profiles of 
individual patients. Importantly, the review highlights 
that ML and AI frameworks, including SVMs, CNNs, and 
deep learning algorithms, are achieving high predictive 
accuracy in survival and treatment response modeling. 
The integration of multi-omics data and electronic health 
records further improves diagnostic precision and supports 
decision-making at the bedside. It is worth mentioning 
that such approaches are not merely experimental but are 
increasingly positioned to reshape the clinical workflow 
in oncology. Several persistent challenges simultaneously 
hinder translation into routine practice, including limited 
interoperability of health information systems, variability 
in data quality, restricted access to diverse genomic 
datasets, and insufficient interpretability of complex 
algorithms. Moreover, most datasets originate from 
high-resource settings, raising concerns about the equity 
and generalizability of bioinformatics-driven models 
worldwide. Likewise, ethical and regulatory issues—
particularly those related to privacy, transparency, and 
algorithmic bias— remain critical considerations. Taken 
together, the evidence indicates that bioinformatics-driven 
personalized medicine in cancer is no longer a theoretical 
aspiration but an emerging reality with tangible clinical 
benefits. To fully realize its potential, future research 
must prioritize federated and privacy-preserving learning 
frameworks, expand explainable AI methodologies, and 
strengthen reproducibility through standardized, multi-
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center, and multi-omic datasets. Equally essential is 
fostering global collaboration to ensure inclusivity and 
equity in data sharing and application. In conclusion, 
bioinformatics provides powerful pathways to transform 
oncology into a truly personalized discipline—where 
prevention, diagnosis, and treatment are tailored to the 
unique molecular signatures of each patient. By addressing 
the current gaps in standardization, interpretability, 
and accessibility, the field can move decisively toward 
precision oncology that is not only innovative but also 
equitable, reproducible, and clinically impactful.
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