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Abstract \
Cancer remains a global health challenge due to high morbidity, mortality, and tumor heterogeneity. Conventional diagnostic and
therapeutic approaches are often insufficient, causing a shift in the paradigm toward personalized medicine. Bioinformatics, by
integrating genomic, transcriptomic, proteomic, imaging, and clinical data, has become pivotal in precision oncology, enabling
biomarker discovery, individualized therapy, and prognostic assessment. This systematic review followed PRISMA guidelines.
PubMed, Scopus, Web of Science, and Google Scholar were searched up to May 2025. Eligible studies examined bioinformatics
applications in cancer diagnosis, prognosis, or treatment personalization. Two independent reviewers performed screening and
data extraction across 12 domains, including cancer type, study design, tools, findings, and challenges. Narrative synthesis and
descriptive statistics were applied, and 18 studies from 8,133 records were included. Breast, lung, and liver cancers were most
frequently investigated, respectively. The United States, Iran, and China were leading contributors. Commonly used platforms
included TCGA, GEO, ENCODE, Cytoscape, STRING, and Reactome. Key biomarkers were TRIP13, STIL, NTRK2/3, FGFR2,
VEGFA, and non-coding RNAs. Support vector machines, convolutional neural networks, LASSO regression, and deep learning
achieved predictive accuracies of 85-95% for tumor subtyping, survival, and treatment response. The integration of multi-
omics and imaging enhanced diagnostic precision and therapeutic stratification. Bioinformatics-driven personalized oncology
is transitioning into clinical reality, improving biomarker discovery and individualized therapy. However, translation remains
constrained by data standardization, interoperability, limited genomic diversity, and algorithm interpretability. Future research
should prioritize explainable Al, federated learning, standardized multi-omic datasets, and international collaboration to ensure

equitable, reproducible, and clinically meaningful precision oncology.
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Background

Cancer encompasses a highly heterogeneous group of
diseases characterized by uncontrolled cell proliferation,
local tissue invasion, and—at advanced stages—distant
metastasis.! Despite remarkable advances in molecular
biology and clinical oncology, cancer remains one of the
leading causes of morbidity and mortality worldwide,
imposing a profound burden on public health systems.?
For example, breast cancer (BC) is currently the most
prevalent malignancy among women and accounts for
approximately 16% of global female cancer deaths.’
The clinical complexity of cancer arises not only from
its potential to affect virtually any organ but also from
extensive inter-tumoral and intra-tumoral heterogeneity,
which continues to challenge both early detection and
effective treatment strategies.*

Conventional diagnostic and therapeutic modalities,
while improving survival in certain cancer types, are
insufficient to comprehensively address this heterogeneity.®
This limitation has driven the paradigm shift toward
personalized medicine, which emphasizes tailoring

diagnostic and therapeutic approaches to the unique
molecular, genetic, and clinical characteristics of each
patient rather than applying uniform, population-based
protocols.®’” Closely aligned with this concept, precision
medicine seeks to stratify patients into well-defined
molecular subgroups in order to better predict disease
course and optimize therapeutic response.® Overall, these
approaches promise to enhance clinical outcomes while
minimizing unnecessary toxicity.’

The successful realization of personalized oncology
critically depends on the ability to integrate and
interpret vast, multidimensional datasets.” Advances in
bioinformatics, clinical informatics, and computational
oncology have provided the essential infrastructure
to transform raw genomic, proteomic, radiologic, and
clinical data into actionable clinical knowledge."! In
addition, artificial intelligence (AI) and machine learning
(ML) techniques enable automated analysis of complex
biomedical data, including high-resolution imaging and
molecular biomarkers, thereby facilitating individualized
decision-support systems.'>'* Large-scale initiatives, such
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as the Cancer Genome Atlas (TCGA) and NIH “All of
Us” Research Program, have generated unprecedented
volumes of high-throughput data; however, translating
these resources into clinically relevant insights remains
a substantial challenge, often referred to as the

“knowledge gap”.!>¢
Despite  numerous  promising  advances  in
bioinformatics, imaging informatics, and targeted

therapeutics, their widespread translation of such
resources into clinical oncology has been slow.'” Barriers
include poor interoperability among health information
systems, lack of standardized data formats, concerns
regarding data privacy, and limited awareness or training
among healthcare professionals.’*?! Furthermore, the
existing body of literature lacks a comprehensive synthesis
of how bioinformatics has been applied to personalized
cancer medicine, which domains (diagnosis, prognosis,
and treatment optimization) have been most extensively
studied, and what critical gaps persist.”?

Accordingly, a systematic review of current evidence
is warranted to evaluate the role of bioinformatics in
advancing personalized oncology. Such an effort can
elucidate the state of the field, identify translational
barriers, and highlight research priorities. Ultimately,
integrating  bioinformatics-driven  approaches into
oncology is expected to accelerate the transition toward
a healthcare paradigm in which every cancer patient
receives individualized, biology-informed, and optimally
effective treatment.

Methods

Study Design

This study was designed as a systematic review
conducted in accordance with the guidelines of the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA). The protocol was developed
prior to the literature search and included predefined
eligibility criteria, data extraction procedures, and
analytical strategies to ensure methodological rigor and
transparency.

Eligibility Criteria

The target population of this review consisted of all peer-
reviewed scientific articles addressing the application of
bioinformatics in personalized medicine for cancer up
to April 2025. Studies were included if their full text was
available (1) and if they were published in English (2),
explicitly focused on bioinformatics in the context of
cancer diagnosis, prognosis, or treatment personalization
(3), and met established quality thresholds based on peer-
reviewed publication and content relevance (4).

Information Sources and Search Strategy

A comprehensive literature search was performed in
PubMed, Scopus, and Web of Science from inception until
May 11, 2025. In addition, Google Scholar was searched
to minimize publication bias and identify gray literature.

To capture potentially relevant studies, the reference lists
of included articles were manually screened, and forward
citation tracking was performed. Moreover, an automated
email alert system was established in the databases to
identify newly published studies during the search period.

The search strategy combined controlled vocabulary
(e.g., MeSH terms) and free-text keywords in three
major domains:

(1#): (“Computational Biology” OR “Computational
Biologies” OR “Computational Molecular Biology”
OR “Computational Molecular Biologies” OR “Bio-
Informatic” OR “Bio Informatic” OR “Bioinformatic”)

(2#): (“Precision Medicine” OR “P Health” OR “P-Health”
OR “Individualized Medicine” OR “Personalized
Medicine” OR Theranostic” OR “Predictive Medicine”

(3#): (Cancer OR Neoplasm OR Malignant OR
Malignancy OR Tumor OR Neoplasia OR Malignancies
OR Benign)

The final search query was (1#) AND (2#) AND (3#).

Study Selection

All retrieved records were imported into EndNote
reference management software, where duplicates were
removed. Screening was performed in three stages: title
screening, abstract screening, and full-text review.

At each stage, two independent reviewers assessed
eligibility based on the inclusion and exclusion criteria.
Discrepancies were resolved by consensus or, when
necessary, by consultation with a third reviewer.

Data Extraction
The required data were extracted using a standardized
data extraction form designed by the research team.
The form included 12 domains: authors and year of
publication, country, type of cancer, study aim, research
design, bioinformatics tools/approaches, analytical
methods, key findings, reported challenges, study
population (demographics), publishing journal, and
quality assessment.

The form was pretested on a small subset of articles
and refined accordingly. Additionally, data entry was
conducted using Microsoft Word and Excel version 2019.

Quality Assessment

To ensure content validity, the extraction form was
reviewed by two domain experts in bioinformatics and
health informatics methodology. Each included study
was independently evaluated by two reviewers for
methodological rigor and reporting quality. In addition,
to assess methodological quality and risk of bias (RoB), a
13-item checklist was utilized, adapted from the QUADAS
and the QAREL tools.

Data Synthesis and Analysis

The extracted data were analyzed through content
analysis to identify thematic categories and recurring
patterns across studies. Descriptive statistics (frequencies,
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percentages, and cross-tabulations) were computed in
Microsoft Excel to summarize study characteristics,
cancer types, bioinformatics tools applied, and reported
outcomes. Further, trends and distributions
visualized using charts and tables.

No meta-analysis was conducted due to the
heterogeneity of study designs, data sources, and outcome
measures. Instead, a narrative synthesis was undertaken to
integrate findings, highlight advances in bioinformatics-
driven personalized oncology, and identify persisting gaps
and challenges.

were

Results

Theinitial database search retrieved 8,133 records. Overall,
3,421 unique articles remained after duplicate removal.
Title screening by two independent reviewers excluded
3,012 records as irrelevant to the study scope, leaving
409 articles for abstract evaluation. Following abstract
screening, 226 studies were excluded for not meeting
the eligibility criteria. A total of 183 full-text articles
were assessed, of which 165 were excluded after detailed
evaluation. Ultimately, 18 studies met all the inclusion

criteria and were included in the final synthesis (Figure 1).

Most studies had been conducted in hospital or
clinical settings, reflecting the translational application of
bioinformatics in real-world oncology practice. BC was the
most frequently investigated malignancy, followed by lung
cancer and liver cancer, highlighting their prominence in
bioinformatics-based oncology research. The other cancer
types, including gastric, ovarian, pancreatic, and head and
neck cancers, were less frequently represented. In terms
of geographic distribution, the United States contributed
the largest number of studies, followed by Iran and
China, with additional contributions from multinational
collaborations, as well as Taiwan, Turkey, Singapore,
and India. This distribution underscores the global
engagement in bioinformatics-driven cancer research and
the dominance of research output from high-resource
settings (Figure 2).

The word cloud (Figure 3) illustrates the most frequently
occurring terms across the included studies, demonstrating
the central themes and methodological focuses in
bioinformatics-driven oncology research. Prominent
terms, such as “expression,” “analysis,” “medicine,” and
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Figure 1. PRISMA Flow Diagram. Note. PRISMA: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses
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Figure 2. (A) Geographical Scope in the Subject of Bioinformatics in Personalized Medicine for Cancer and (B) The Growth Trend of Articles in the Field of

Bioinformatics in Personalized Medicine for Cancer in Databases
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Figure 3. Word Cloud of Key Terms Extracted From the Included Studies

“learning;” highlight the dominant role of gene expression
profiling, computational analysis, and ML in precision
cancer medicine. Repeatedly reported molecular targets
included TRIP13, STIL, NTRK2/3, FGFR2, and VEGFA,
as well as regulatory non-coding RNAs (ncRNAs), such
as miR-21 and miR-145, underscoring their recurrent
significance as diagnostic and prognostic biomarkers.
The visualization also emphasizes the widespread use of
public genomic repositories and bioinformatics platforms,
with TCGA, GEO, ENCODE, GTEx, UCSC, ICGC, and
KEGG appearing as the most cited resources. Analytical
pipelines and tools, such as Cytoscape, STRING,
DAVID, Reactome, GSEA, Oncomine, and TumorScope,
were also prominently represented, representing their
application in pathway enrichment, network analysis, and
predictive modeling.
Additionally, ML algorithms, including support vector
machine (SVM), convolutional neural network (CNN),
least absolute shrinkage and selection operator (LASSO),
and deep learning approaches, were frequently mentioned,
supporting their growing role in survival prediction,
treatment response modeling, and tumor subtyping.
The diversity of terms related to data reproducibility,
integration, and open-source platforms indicates an
increasing focus on standardization and accessibility
in the field.
Overall, the word <cloud demonstrates that
bioinformatics research in oncology is characterized
by a strong reliance on large-scale genomic data, ML
algorithms, and integrative analytic frameworks, with the
ultimate goal of advancing biomarker discovery, treatment
personalization, and early cancer detection.
The analysis of the included studies revealed diverse
research foci. The most common themes were as follows:
o  Bioinformatics networks in cancer diagnosis and
personalized medicine support, including integration
with electronic health records to enhance patient care
and safety

o Identification and validation of biomarkers,
particularly involving ncRNAs, the miR-200 family,
and related gene targets.

o Development of bioinformatics-driven approaches
for drug selection, therapeutic optimization, and

prediction of treatment outcomes

o Application of AI and ML for cancer detection,
gene expression profiling, biomarker discovery, and
predictive modeling

o Integration of genomic, transcriptomic, and imaging
data to improve diagnostic accuracy and prognostic
assessment

o Enhancement of personalized treatment strategies,
including targeted drug selection, improved
biomarker-based stratification, and quality-of-life
improvement for cancer patients.

The reviewed studies employed a variety of
bioinformatics processes, including:
o Algorithm  development and computational
modeling;
o  Prediction of therapeutic response and treatment
outcomes;

o Clinical validation and data standardization;

o Systems biology approaches to signaling pathways
and therapeutic target identification;

o Design of integrative multi-omics databases;

o Automated imaging analysis and structural genomics;

o ML-based models for prognosis and treatment
planning.

A recurrent theme was the emphasis on data integration

across multiple layers (genomic, clinical, and imaging),

highlighting the potential and challenges of multi-modal
bioinformatics in oncology.

Despite promising advances, several challenges were

consistently reported, including:

e Interoperability and standardization issues across
health information systems;

e Regulatory and privacy concerns related to clinical
and genomic data;

e  Limited clinical adoption of bioinformatics tools due
to technical complexity and insufficient training of
healthcare professionals;

e Need for international collaboration and large-scale
data sharing to enable robust, generalizable findings.

Table 1 presents further details of the included studies,
including authors and year, country, aim of research,
type of cancer, bioinformatics aspects, setting, included
processes, methods, key findings, challenges, and

21 | Digital Health Trends Journal. 2025;1(1)



Jalilian and Beheshti

Table 1. Details of the Selected Studies in This Review

Authors and

Bioinformatics

Year Country Aim of research Type of cancer aspects Setting Included processes Methods Key findings Challenges Demographics
lolanda Capone Evaluation of bioinformatics ~ Multiple (STT,  ADx, ARR, and Institutional RNA extraction, FusionPlex, FISH, High accuracy in STT; Low RNA quality in 190 patients, 193
P Italy tools for identifying fusion lung, thyroid, ~ SFU for RNA-seq ~ Molecular Tumor ~ RNA-seq, and fusion ~ RT-PCR, ADx, ARR, ~ more suitable ARR in  FFPE and discrepancy P !
etal., 2022 > K . X . X FFPE samples
transcripts and the like) from FFPE Board analysis and SFU carcinoma. with FISH
Khorasar?l, L . miRWalk, KEGG pathway Bioinformatics E2F3, BCL2, and The lack of data for Without human
Shahbazi, Investigation of miR-200 and TargetScan, - . databases, network . . .

R Iran . Prostate cancer In silico study analysis and gene - CCNE?2 are the main ~ some miRNAs leads to  population (data
Mahdiyan - target genes in prostate cancer DAVID, and taretin drawing, and targets false results analysis)
2018%4 Cytoscape geting performance analysis gets. ’ Y

Evaluation of the use of
HID-SCA technology for the Image), . » o 129 NSCLC
. identification, imaging, and Breast, lung, USC Convergent CTC isolation, HD-SCA, confocal Predicting treatment  Phenotypic diversity of . .
Zurita AJ et al., . L : Python, CTC . K . L K . o . patients in one
5 USA biological-informational prostate, and . Science Institute in  staining, imaging, and  microscopy, and response through CTC ~ CTC and difficulty in
2020 . . . . morphometrics, > . . e study, others
analysis of circulating tumor the like Cancer analysis single-cell RNA analysis identification .
. o and RNA-seq different
cells (CTCs) in the biological
fluid of cancer patients
Cheng, Moore, The application of Not cancer G'Lu'lt—by—' . . . Analysis of the Machine learning  The extensive regulatory The statement k')e'low, Without a specific
. A . specific association, tiling  Pacific Symposium  structure, function, . . lack of ML training . .
Greene - 2014 USA bioinformatics in the analysis ) . . models and analysis role of INcRNA in . population; public
(IncRNAs arrays, and RNA-  on Biocomputing and localization of ) data, and high
2 of ncRNAs of the miRNA target cancer A bases.
general) seq ncRNA diversity
Cheng et al Off-label drug suggestion in Trinle negative SVM, TCGA, Analvsis of public GE, CNV, Mutation, SVM, AUC, KEGG, 71.8% of patients Elimination of 85 TNBC patients
5 v USA 5 Sus8 P 5 CCLE, CTRP, and 4 P and drug sensitivity DAVID, and target ~ have a treatment goal; potential goals and (TCGA), 18 cell
201627 TNBC with ML BC A data A A ) A . )
fusion data analysis matching algorithm ~ Methotrexate, Olaparib activating leaps lines
Ow, Tang, Prediction of prognosis with High-grade PBVV, PSV, . . Expression 1D-DDg, SWVg, PSV has higher Need fo'r precise TCGA (350),
. . . TCGA, GEO, Bioinformatics Lo . ) L. normalization,
Kuznetsov — Singapore PBVV and PSV models in serous ovarian and Euclidean Institute. Singanore binarization, patient ~ AWR, and Kaplan-  accuracy in prediction challenging feature GSE9899, and
2016 ¢ HGSC cancer . + oingap comparison Meier compared to PBVV. 8ing GSE26712 (359)
distance selection
DESeq2, Lack of clinical TCGA (407),
Sinnarasan et India Identification of biomarkers for Gastric cancer Cytoscape, SVM- Pondicherry RNA-seq, DEG, PPI, SVMG_EEIE/’\S;?;NG’ D¥EIZLZ’ gl(gf’as variables and PRINA435914 (68),
al., 2023 » stomach cancer using ML RFE, TCGA, and University ROC, and survival L ' insufficient laboratory  and PRJNA555737
ClusterProfiler biomarkers . .
GEPIA confirmation (12)
Lai etal, . A risk model for aging in LIHC Liver DESeq2, LASSO, A ‘ A IdentAlflcat[on of SRGs, LA§SO, Kaplan- SOCS2, IGFBP3, and ‘Nefed for m(‘JreA TCGA-LIHC (424)
China . hepatocellular ~ KEGG, GO, and Jinan University survival analysis, and Meier, Cox, ROC, RACGAPT are key validation and limited
2024 % using SRGs ; I ) R and PAAD (183)
carcinoma nomogram model building and DCA biomarkers. generalizability
UALCAN, KM- Gene expression, .
Mohammadi et Evaluation of NTRK family plotter, STRING, Iranian academic genome alteration, Welch t-test, NTRK?B above Tumor heterogengty TCGA: 1101
Iran . BC ) . log-rank, and expression =better and need for in vivo :
al., 2025°1 in BC Enrichr, and centers survival, and targeted ) . S patient
bcGenExMiner prognosis validation
DGldb drugs
Multiple . )
. ) ) LOINC, OMOP, Extraction of genomic . Only 5.2% of cancer Lack of structural 5,678 cancer
Ronquillo & Precise medical status and (breast, . EHR mining and : . .
USA - L Python, R, and NIH All of Us test data and their 2 patients underwent data and low racial patients out of
Lester — 202232 genomic testing in All of Us  prostate, blood, . LOINC classification . A R
. Jupyter analysis genomic testing. diversity 315,297 people
and the like)
KRAS-wild-type profile in KRAS wild-type  NGS (831 genes), . . Jump analysis, fusion, Hisat2, maftools, HRD related to Low validation 34 patients; 73.5%
Suetal, . ) . ) Harbin Medical ) . .
2025 China  pancreatic cancer for precision pancreatic RNA-seq, and University treatment response, Kaplan-Meier, and  platinum response and without matched under 65 years old,
treatment cancer CIBERSORT and survival IOBR treatable fusions blood samples. different stages
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Table 1. Continued.

Authors and

Bioinformatics

Year Country Aim of research Type of cancer aspects Setting Included processes Methods Key findings Challenges Demographics
Vakili et al lg;:jd;’ Arec\/?::/‘f)r;h:::glinn(}e:égil Head and OncoMiR, GEO, Collaborative Review of miRNA, OncoMiR, meta- miR-21, miR-155, Lack of Multiple studies
2024 3 v KSA inc,i cancer with emphasis on neck cancer DEGs, KEGG, international pathway, HPV, and  analysis and in silico ~ miR-145, and EGFR standardization of with hundreds of
’ ! emp (HNSCQ) TGF-B, and AI/ML review EGFR validation biomarkers miRNA data HNSCC patients
Poland miRNA
Lin etal., 2022 Al in precision medicine to (cr;/‘l‘:)lrtgéltil Al, ML/DL, NLF, NGS, RNA-seq, CNN, SVM, Al'has improved inte(r:OthZi?:n of Taiwanese patient
v Taiwan . p . ! REVEL, DRAGEN, NCKU Hospital mutation signature, CADD, UMAP, and prediction and the . p p
’5 improve cancer treatment ovarian, lung, . . single-cell data, defect ~ data and TCGA
. and QOCA and single-cell model DeconstructSigs accuracy of treatment. .
and skin) in EHR
Differences in the SIET. PolvPhen University of NGS for 27 genes,
Agaoglu et al., interpretation of hereditary Hereditary 1O ! ty comparing the ACMG criteria, PP3,  22.5% Disagreement; Lack of clinical data 285 patients; age:
Turkey . ACMG, and Health Sciences, . ‘ . o
2022 % cancer variants between Bls cancers ) interpretation of PM1, and PP5 Conflicting Criteria by Bls 46; 251 women
SOPHIA DDM Turkey ;
and CGs variants
SVM, microarray, . . . RCT with
Winterhoff et USA and A molecular model for Epithelial HITON-PC, ICON7/OVAR-11 RNA extraction, SVM, Cox A prediction of 10— The complexity of the = 1" oo
Bevacizumab response in X . modeling, and regression, and months of additional model requires phase .
al., 2022°7 Germany . ovarian cancer MFAP2, and RCT, 2000 patients D ) o with complete
ovarian cancer validation NNFCV survival for responders. 11l validation. . ;
VEGFA information
Peterson et al., Prediction of NAT response in CNN (ResVNet), s'mB.IOSys.' MRI, segmentation, ROC, AUROC, Log- 91.2% accuracy in No examination of 80 pat'lf?nts, mixed
USA . Early BC MRI, and Cincinnati and response S the lymph node and ethnicity, TNBC
2023 %% BC with a 4D model - N . rank, and MAE predicting pCR .
pharmacokinetics University modeling limited MRI 22.5%
Jia etal., . Identification of specific Luminal o, Limma edgeR, oy ngolia  Analysis of DEGs, PPI MCODE, NMUR1T, CDC7,and  Lack of laboratory TCGA: 439
2020 % China Luminal A and Basal-like basal-like BC PP, Cytoscape, Medical University network, and gene cytoHubba, and STIL are key genes validation samples
genes KEGG, and GO survival PROGgeneV2 Y Benes.
. . . RNA array, 6,173 patients
Mokhtari etal.,  Iran and BMC3PM for precise drug Limma, CMAF, University of constructing the Spearman, p group drug La.Ck O.f laboratory and 312 healthy
L BC KEGG, IPPGE, Tehran, Duke, and . KEGGgraph, and DC combinations were validation and data o
2023 40 USA combination in BC . IPPGE profile, and . . . individuals , from
and PHM the like algorithm more effective. difference

health matrix GEO

Note. ncRNA: Non-coding ribonucleic acid; TNBC: Triple-negative breast cancer; ML: Machine learning; Al: Artificial intelligence; HGSC: High-grade serous carcinoma; LIHC: Liver hepatocellular carcinoma; SRG: Survival/senescence-related gene;
NTRK: Neurotrophic tyrosine receptor kinase; miRNA: Micro ribonucleic acid; Bl: Bioinformaticians; CG: Clinical geneticist; NAT: Neoadjuvant therapy; BMC3PM: Bioinformatics multidrug combination protocol for personalized precision medicine;
STT: Soft tissue tumor; LncRNA: Long non-coding ribonucleic acid; KRAS: Kirsten rat sarcoma viral oncogene homolog; HNSCC: Head and neck squamous cell carcinoma; FFPE-RNA seq: Formalin-fixed paraffin-embedded ribonucleic acid sequencing;
SVM: Support vector machine; TCGA: Cancer Genome Atlas; CCLE: Cancer Cell Line Encyclopedia; CTRP: The Cancer Therapeutics Response Portal; GEO: Geographic or geospatial; RFE: Recursive feature elimination; LASSO: Least absolute shrinkage
and selection operator; KEGG: Kyoto Encyclopedia of Genes and Genomes; GO: Gene ontology; UALCAN: The University of Alabama at Birmingham CANcer data analysis portal; KM-plotter: Kaplan-Meier Plotter; STRING: Search Tool for the Retrieval
of Interacting Genes/Proteins; DGldb: Drug-Gene Interaction Database; OMOP: The Observational Medical Outcomes Partnership; CIBERSORT: Cell-type identification by estimating relative subsets of RNA transcripts; TGF-p: Transforming growth
factor-beta; DL: Deep learning; NLP: Natural language processing; REVEL: Rare Exome Variant Ensemble Learner; DRAGEN: Dynamic Read Analysis for GENomics; SIFT: Sorting Intolerant From Tolerant; PolyPhen: Polymorphism phenotyping; DDM:
Data-driven machine; HITON-PC: Parents and children; MFAP2: Microfibrillar-associated protein 2; VEGFA: Vascular endothelial growth factor A; CNN (ResVNet): Convolutional neural network; edgeR: Empirical Analysis of Digital Gene Expression
Data in R; CMAP: Connectivity map; PHM: Primary health matrix; USC: University of Southern California; NIH All of Us: The All of Us Research Program, a long-term research initiative by the National Institutes of Health; NCKU Hospital: National
Cheng Kung University Hospital; ICON7: The International Collaboration on Ovarian Neoplasms 7; RCT: Randomized controlled trial; GE: Gene expression; CNV: Copy number variation; HPV: Human papillomavirus; EGFR: Epidermal growth factor
receptor; NGS: Next-generation sequencing; MRI: Magnetic resonance imaging; DEG: Differentially expressed gene; PPI: Protein-protein interaction; IPPGE: Immunofixation and protein electrophoresis; FISH: Fluorescence in situ hybridization; RT-
PCR: Real-time polymerase chain reaction; ADx: Advanced diagnostics; ARR: Arriba; SFU: STAR-fusion; HD-SCA: High-definition or high-dimensional single-cell analysis; AUC: Area under the curve; DAVID: The Database for Annotation, Visualization,
and Integrated Discovery; 1D-DDg: One-dimensional data-driven grouping; SWVg: Statistically weighted voting grouping; AWR: Advantage-weighted regression; STRING: Search Tool for the Retrieval of Interacting Genes/Proteins; GEPIA: Gene
Expression Profiling Interactive Analysis; ROC: Receiver operating characteristic; DCA: Decision curve analysis; EHR: Electronic health record; LOINC: Logical Observation Identifiers Names and Codes; Hisat2: Hierarchical Indexing for Spliced
Alignment of Transcripts 2; IOBR: Immuno-oncology biological research; OncoMiR: Oncogenic micro ribonucleic acid; CADD: Combined Annotation-Dependent Depletion; UMAP: Uniform manifold approximation and projection; ACMG: the
American College of Medical Genetics and Genomics; NNFCV: Nested N-fold cross-validation; AUROC: Area under the receiver operating characteristic curve; MAE: Mean absolute error; MCODE: Molecular complex detection; DC: Difference of
convex; ARR: Absolute risk reduction; E2F3: Early 2 Factor transcription factor 3; BCL2: B-cell lymphoma 2; CCNE2: Cyclin E2; PSV: Prognostic signature vector; PBVV: Prognostic binary variable vector; TRIP13: Thyroid hormone receptor interactor 13;
KIF14: Kinesin family member 14; DTL: Denticleless E3 ubiquitin protein ligase homolog; EXO1: Exonuclease 1; SOCS2: Suppressor of cytokine signaling 2; IGFBP3: Insulin-like growth factor binding protein-3; RACGAP1: Rac guanosine triphosphate-
activating protein 1; HRD: Homologous recombination deficiency; pCR: Pathologic complete response; NSCLC: Non-small cell lung cancer; BC: Breast cancer; PAAD: Pancreatic adenocarcinoma.

23 | Digital Health Trends Journal. 2025;1(1)



Jalilian and Beheshti

demographics.

The quality of the 18 studies included in this systematic
review was evaluated using an integrated approach
combining the QUADAS-2 and QAREL tools. Table 2
provides a comprehensive summary of RoB, applicability
concerns, and reliability for each study. All studies were
considered to have low RoB across the QUADAS-2
domains, including patient selection, index test, reference
standard, and flow and timing. Similarly, applicability
concerns were minimal, indicating that the included
studies were methodologically appropriate and relevant to
the research objectives. The QAREL assessment confirmed
acceptable reliability for all studies, demonstrating that
the study populations, examiners, test procedures, and
statistical analyses were appropriate, reproducible, and
consistently reported. Moreover, the Notes column
highlights the methodological strengths of each study, such
as the use of real clinical samples, multi-cohort validation,
robust in silico analyses, and advanced bioinformatics and
ML approaches. Overall, this quality assessment supports
the inclusion of all studies in the review and indicates that
the findings derived from these studies are reliable and
methodologically sound. The integration of both tools
provides a robust framework to ensure that the evidence
synthesized in this review is based on high-quality and
reproducible research.

Across the included studies, a consistent focus was
placed on the identification of cancer-related genes and
regulatory molecules, such as TRIP13, STIL, NTRK2/3,
FGFR2, VEGFA, miR-21, and miR-145, which were
reported as diagnostic or prognostic biomarkers in
multiple tumor types, including breast, liver, gastric, and
ovarian cancers. More than twelve studies specifically
investigated these targets, highlighting their potential role
in precision oncology.

In addition, ML approaches were widely applied, with
over half of the studies employing at least one algorithm.
Severalmethods(e.g.,SVM, convolutionalneural networks,
LASSO, and deep neural networks) demonstrated strong
predictive performance. Reported accuracies ranged from
85% to 95% for predicting treatment response, overall
survival, or tumor subclassification. For example, the
TumorScope model was evaluated in BC for predicting
therapeutic response, while a LASSO-based model
showed prognostic utility in liver cancer.

Several studies integrated genomic analyses into
treatment selection strategies, including the use of
combinatorial drug approaches in the BMC3PM
framework and off-label drug recommendations for
triple-negative BC. The findings consistently supported
the role of bioinformatics in tailoring therapeutic options
to individual molecular profiles. Furthermore, specific
studies (e.g., Agaoglu et al*) emphasized variability
in genetic variant interpretation among clinicians,
underscoring the need for standardized frameworks.

Challenges related to data quality and accessibility were
recurrent. For instance, Ronquillo et al** reported that

only 5.2% of participants in the All of Us program had
available genomic data, and multiple studies noted the
lack of structured or standardized datasets. Most datasets
originated from large public repositories (e.g., TCGA,
GEO, and ENCODE), which predominantly represent
Western  populations.  Laboratory-based  analyses
constituted the primary research setting.

Notably, the integration of genomic, clinical, and imaging
data was shown to improve diagnostic accuracy and
enhance clinical decision-making, particularly in studies
from Taiwan and the United States employing hybrid
Al frameworks. Novel therapeutic opportunities were
also reported: for example, FGFR2 fusions in pancreatic
cancer and biomarkers in KRAS-wild-type tumors were
suggested as potential candidates for targeted therapy.

Collectively, the evidence indicates that bioinformatics
offers powerful tools for identifying novel therapeutic
targets, predicting treatment outcomes, and supporting
precision medicine approaches in oncology. However,
progress is limited by a number of challenges, such as alack
of structured data, insufficient algorithm interpretability,
and restricted access to genomic datasets, highlighting the
necessity of standardized infrastructures and international
data-sharing initiatives.

Discussion

Thisreviewunderlinestherapidevolution ofbioinformatics
and precision oncology, where advances in AI, ML, and
integrative multi-omics are reshaping cancer diagnosis,
prognosis, and therapeutic decision-making. Recent
studies underscore the transformative role of combining
genomics and Al to enable early detection, drug resistance
prediction, and targeted therapy design. These approaches
have demonstrated substantial clinical value, although
challenges remain regarding data standardization,
algorithmic interpretability, bias mitigation, and ethical
governance.”’ Furthermore, integrating genomics with
transcriptomics and proteomics has provided a more
comprehensive understanding of tumor biology, thereby
facilitating individualized treatment strategies.*?
Advances in genomic bioinformatics have produced
powerful platforms, including cBioPortal, GDC, GEO,
and other pathway/network analysis tools, which are
increasingly employed for biomarker identification and
detection of cancer driver mutations. Such resources
are central to tailoring treatments and predicting
therapeutic response.”” Emerging evidence suggests that
Al significantly contributes to predicting responses to
immunotherapy, identifying novel therapeutic targets
(e.g., IncRNAs), and accelerating the discovery of
precision oncology drugs. Despite this potential, critical
issues regarding transparency, reproducibility, and ethical
implementation persist.**

Integrating  diverse layers—including
genomics, epigenomics, transcriptomics, and
proteomics—has reinforced the concept of systems
biology of cancer, yielding novel insights into disease

molecular
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Table 2. Integrated Quality Assessment of Included Studies Using QUADAS-2 and QAREL Tools
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lolanda Capone et al., low Low Low Low Low Low Low Low Yes Yes  Yes Yes Yes Yes Yes  Yes Yes Yes No  Good Real clinical FFPE samples; validated with reference
2022 % standards
Khorasani, Shahbazi, N L .
Mahdiyan - 2018 2 Low Low Low Low N/A NA NA Low Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No  Good Robust in silico analysis with validated databases
Zurita Al et al., 2020 Low Low Low Low Low Low Low Low  Yes Yes Yes Yes Yes Yes Yes  Yes Yes Yes No  Good Imaging and RNA-seq with high accuracy
Cheng, Moore, Greene . .
907472 Low Low Low Low N/A NA NA Low Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No  Good Public datasets; validated ML approaches
Chengetal., 2016 % Low Low Low Low Low Low Low Low  Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No  Good Integration of TCGA and CCLE with ML
;)Ov;/,g;ng, Kuznetsov - Low Low Low Low Low Low Low Low Yes Yes Yes Yes Yes Yes Yes  Yes Yes Yes No  Good Multi-dataset analysis; strong predictive modeling
Sinnarasan etal., 20232 Low Low Low Low Low Low Low Low  Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No  Good ML-based biomarker discovery; public dataset validation
Lai et al., 2024 * Low Low Low Low Low Low Low Low  Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No  Good Multi-cohort survival and risk modeling with LASSO
fzvz)(;ga[?madl etal, Low Low Low Low Low Low Low Low  Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No  Good Comprehensive NTRK evaluation in the TCGA cohort
58;;2;”0 &Lester - Low Low Low Low Low Low Low Low  Yes Yes Yes Yes Yes Yes Yes  Yes Yes Yes No  Good Rigorous EHR mining with LOINC standards
Suetal., 2025 % Low  Low Low Low Low Low Low Low  Yes Yes  Yes Yes Yes Yes Yes  Yes Yes Yes No  Good Broad genomic sequencing; therapeutic correlation
Vakili et al., 2024 ** Llow Low Low Low Low Low Low Low Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No  Good Comprehensive systematic review of miRNAs
Linetal., 2022 % Low Low Low Low Low Low Low Low  Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No  Good Al/ML application on multi-cancer datasets
Agaoglu et al., 2022 3¢ Low Low Low Low Low Low Low Low Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No  Good Bioinformatics evaluation of hereditary cancer variants
Winterhoff et al., 202237 Low  Low  Low Low Low Low Low Low  Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No  Good Molecular modeling validated in large RCTs
Peterson et al., 2023 3% Low Low Low Low Low Low Low Low Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Good ;\i\/j;c;d 4D modeling with high MRI predictive
Jia etal., 2020 % Low Low Low Low Low Low Low  Low Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Good PPl network-based key gene identification
Mokhtari etal., 20234 Low Low Low Low Low Low Low Low Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No  Good Personalized drug modeling; large GEO datasets

Note. FFPE-RNA-seq: Formalin-fixed paraffin-embedded ribonucleic acid sequencing; TCGA: Cancer Genome Atlas; CCLE: Cancer Cell Line Encyclopedia; LASSO: Least absolute shrinkage and selection operator; NTRK: Neurotrophic tyrosine
receptor kinase; EHR: Electronic health record; LOINC: Logical Observation Identifiers Names and Codes; miRNA: Micro ribonucleic acid; Al: Artificial intelligence; ML: Machine learning; RCT: Randomized controlled trial; MRI: Magnetic
resonance imaging; PPI: Protein-protein interaction; GEO: Geographic or geospatial.
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heterogeneity and treatment response *°. Recent reviews
have highlighted how AI can improve the integration
of multi-omics data into pharmacological workflows,
supporting drug prioritization and optimizing therapeutic
choices.* Additionally, novel directions in oncology
bioinformatics (e.g., counterfactual ML frameworks)
offer interpretable and trustworthy treatment
recommendations, bridging the gap between algorithmic
predictions and clinical decision-making.”” Moreover,
federated learning has emerged as a promising approach
for enabling collaborative research across multiple centers
while preserving patient privacy, although reproducibility
and harmonization remain challenges.*

A critical component of evaluating the robustness and
translational potential of these approaches lies in the
assessment of study quality. In this review, all included
studies demonstrated low RoB and high applicability
across QUADAS-2 domains, indicating rigorous
patient selection, well-validated index tests, and reliable
reference standards. In addition, most studies adhered
to methodological best practices, including appropriate
statistical ~ analyses, blinded interpretation, and
standardized examiner training, as reflected by consistent
“Yes” responses across Q1-Q10 questions and “Good”
overall QAREL reliability. Notably, the studies utilized
diverse but high-quality datasets (i.e., clinical FFPE
samples, public multi-omics repositories, imaging data,
and robust in silico analyses), enhancing the credibility and
generalizability of the findings. Furthermore, the low RoB
across these studies supports the reliability of conclusions
drawn regarding biomarker identification, ML-based
treatment modeling, and multi-omics integration.

The findings of the present work closely align with
these emerging trends in precision oncology. Specifically,
the identification of key biomarkers, such as miR-21
and NTRK2/3, underscores the growing importance
of advanced bioinformatics platforms in biomarker
discovery.” Similarly, the application of ML for modeling
treatment response parallels recent efforts in Al-driven
prediction of immunotherapy outcomes and drug
sensitivity.**** Furthermore, the study’s emphasis on
integrating genomic, imaging, and clinical data conforms
to the multi-omics paradigm, which is increasingly
recognized as the cornerstone of precision oncology.*>*
Models such as BMC3PM exemplify the development of
counterfactual treatment recommendation frameworks
designed to provide interpretable and clinically relevant
decision support.” Considerations related to data
sharing and patient privacy correspond to the adoption
of federated learning approaches in oncology.*® Finally,
the predictive modeling of therapy response contributes
to the broader movement toward Al-based adverse drug
reaction prediction and personalized treatment selection.”

To further enhance the clinical utility and translational
impact of such approaches, future research should
focus on several key directions. First, the incorporation
of federated and privacy-preserving ML frameworks

is essential to enable multi-center validation without
compromising patient confidentiality. Equally important
is the advancement of explainable AI (XAI) methodologies
to ensure that predictions remain interpretable and
actionable for clinicians and patients. In addition,
strengthening  reproducibility and standardization
through the use of large-scale, multi-omic, and multi-
institutional datasets will be critical for achieving robust
and generalizable findings. Ultimately, careful attention
must be given to ethical and regulatory considerations
to promote equitable and responsible deployment of
Al-driven precision oncology. The consistently high
methodological quality of the studies included in this
review further emphasizes that future work built upon
rigorous and transparent study designs is likely to yield
clinically meaningful and trustworthy insights.

Conclusion

This systematic review demonstrated that bioinformatics
has become a cornerstone of personalized oncology by
enabling the integration of genomic, transcriptomic,
proteomic, and imaging data into clinically actionable
insights. Across the 18 included studies, consistent
advances were identified in biomarker discovery (e.g.,
TRIP13, STIL, NTRK2/3, VEGFA, miR-21, and miR-145),
ML-based predictive modeling, and bioinformatics-driven
therapeutic optimization. These findings underscore
the central role of computational tools in enhancing
early detection, refining prognosis, and tailoring cancer
treatment to the molecular and clinical profiles of
individual patients. Importantly, the review highlights
that ML and AI frameworks, including SVMs, CNNs, and
deep learning algorithms, are achieving high predictive
accuracy in survival and treatment response modeling.
The integration of multi-omics data and electronic health
records further improves diagnostic precision and supports
decision-making at the bedside. It is worth mentioning
that such approaches are not merely experimental but are
increasingly positioned to reshape the clinical workflow
in oncology. Several persistent challenges simultaneously
hinder translation into routine practice, including limited
interoperability of health information systems, variability
in data quality, restricted access to diverse genomic
datasets, and insufficient interpretability of complex
algorithms. Moreover, most datasets originate from
high-resource settings, raising concerns about the equity
and generalizability of bioinformatics-driven models
worldwide. Likewise, ethical and regulatory issues—
particularly those related to privacy, transparency, and
algorithmic bias— remain critical considerations. Taken
together, the evidence indicates that bioinformatics-driven
personalized medicine in cancer is no longer a theoretical
aspiration but an emerging reality with tangible clinical
benefits. To fully realize its potential, future research
must prioritize federated and privacy-preserving learning
frameworks, expand explainable AI methodologies, and
strengthen reproducibility through standardized, multi-
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center, and multi-omic datasets. Equally essential is
fostering global collaboration to ensure inclusivity and
equity in data sharing and application. In conclusion,
bioinformatics provides powerful pathways to transform
oncology into a truly personalized discipline—where
prevention, diagnosis, and treatment are tailored to the
unique molecular signatures of each patient. By addressing
the current gaps in standardization, interpretability,
and accessibility, the field can move decisively toward
precision oncology that is not only innovative but also
equitable, reproducible, and clinically impactful.
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