
Background 
High blood pressure (BP) is considered one of the main 
health concerns that affects an estimated 1.28 billion 
people worldwide. In fact, it is recognized as a major risk 
factor for cardiovascular diseases, serious complications, 
and even preventable mortality.1,2

Considerable progress has been made in the diagnosis 
and management of high BP, although much work remains 
to be performed in terms of the awareness, treatment, 
and control of this disease. Interestingly, only about 14% 
of patients can manage to keep their systolic BP below 
140 mmHg worldwide.3,4 High BP is extremely difficult 
to control due to the complexity of the disease itself. 
Different factors (e.g., genes, the role of environment in 
gene alteration, residence, financial resources, and daily 
activities) contribute to high BP.5-7

In recent years, artificial intelligence (AI) has entered 
the medical world as a transformative technology, opening 
up new horizons for specialists. More precisely, doctors 
can now view and address complex clinical challenges 
(e.g., managing high BP) in innovative ways.8,9 AI, which 

includes machine learning (ML) and deep learning 
(DL), has shown promise in pattern recognition, risk 
assessment, and outcome prediction. This is particularly 
promising when applied to large amounts of health data, 
such as information from wearable devices, electronic 
health records (EHRs), or omics data.9-11

In addition, AI is extensively applied in the field 
of hypertension (HTN), including noninvasive 
measurement, early diagnosis of various types of the 
disease, risk prediction, and individualized treatment 
design. In fact, this technology is laying the foundation 
for precision and personalized medicine more firmly than 
ever before.8,12

Moreover, the combination of AI with mobile 
technologies, wearables, and telemedicine enables 
continuous and remote monitoring and control of BP. 
This is especially valuable for chronic diseases (e.g., high 
BP) and can be of great help to patients and doctors.4,13

Despite all these advances, AI tools have yet to enter 
clinical practice in various places and remain largely in 
the experimental stage. However, there are challenges 
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in this regard. For example, it is difficult to precisely 
understand the algorithms. In addition, the models 
should be tested in real-world conditions, and it should be 
ensured that their results apply to different populations.8 
Eventually, researchers have been diving into how AI 
can help diagnose and manage HTN. Gudigar et al 
found that most studies stuck to just one type of data. 
Although methods such as electrocardiograms (ECG), 
photoplethysmography (PPG), or medical images kept 
coming up, there was not much beyond that. Only a few 
studies could combine multidimensional data, including 
bringing together clinical information, signals, and 
imaging to achieve a more complete view.14

Despite the scientific value of this review, there are 
important aspects that justify the present study. First, 
the present study exclusively focuses on the diagnosis of 
HTN. Gudigar et al investigated the secondary effects of 
HTN (e.g., kidney and heart issues). However, our study 
concentrates on AI-based methods for actually diagnosing 
HTN. Nonetheless, there is a large research gap here. The 
mentioned researchers have indicated that people have 
not really dug into using multimodal and explainable 
AI for diagnosing high BP. This systematic review seeks 
to shine a light on that gap and offer some ideas to help 
shape the direction of future research.

Further studies are required to obtain data about AI and 
high BP diagnosis. Accordingly, this study aims to review 
articles published between 2015 and 2025, focusing on 
studies that evaluated patients with high BP and how AI 
could help diagnose this medical condition.

Methods
Search Strategy
This systematic review was conducted according to the 
guidelines of the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses. Several databases, including 
PubMed, Scopus, and Web of Science, were searched 
for studies published between January 2010 and August 
2025. To this end, specific keywords were used, such as 
“Artificial intelligence” OR “machine learning” OR “deep 
learning” AND “hypertension” OR “high blood pressure” 
AND “diagnosis” OR “detection” OR “screening”.

Inclusion and Exclusion Criteria
Inclusion Criteria
•	 Studies that used AI methods, such as ML, DL, or 

neural networks (NNs), to manage high BP
•	 Articles published in English
•	 Original peer-reviewed research articles, including 

clinical trials, observational studies, and retrospective 
analyses

•	 Studies that primarily focused on the use of AI for 
HTN diagnosis

Exclusion Criteria
•	 Non-English publications
•	 Review articles, editorials, commentaries, conferences, 

and letters to the editor
•	 Studies not specifically focusing on HTN
•	 AI applications in unrelated medical conditions

Data Extraction 
Two independent reviewers reviewed the titles and 
abstracts. Then, full texts of potentially eligible articles 
were assessed for inclusion. Disagreements were resolved 
by a third reviewer. Different data were extracted for each 
study, including (1) authors and year of publication, (2) 
study type and population, (3) AI technique(s) used, (4) 
purpose of AI application (e.g., diagnosis or monitoring), 
(5) key outcomes and performance measures (e.g., 
accuracy, sensitivity, and specificity), and (6) limitations 
and challenges.

Quality Assessment
The methodological quality and risk of bias of the included 
studies were assessed using the QUADAS-2 tool (Quality 
Assessment of Diagnostic Accuracy Studies-2). This 
instrument evaluates four key domains: patient selection, 
index test, reference standard, and flow and timing. 
The findings of the quality assessment are qualitatively 
reported in the Discussion section.

Data Analysis 
The data were qualitatively synthesized, and where 
possible, a comparative analysis was performed based on 
AI techniques and application domains.

Results
Study Selection
A total of 1,628 records were identified through database 
searches. After discarding duplicates (n = 485), records 
that were removed by automation tools (n = 36), and other 
irrelevant records (n = 289), 818 articles remained, which 
were screened based on their titles and abstracts. Of this 
number, 477 were excluded since they did not match the 
inclusion criteria. The full text of 341 articles was reviewed, 
and 118 of them were excluded due to irrelevance. 
Another 175 articles were also removed because they did 
not include the intended data. Eventually, 48 studies were 
included in this systematic review (Figure 1).

Overview of Included Studies
Table 1 summarizes the findings of previous studies 
conducted on the use of AI in hypertension diagnosis.

The selected studies spanned various AI approaches 
applied to the diagnosis of HTN and related conditions, 
including essential hypertension, pulmonary hypertension 
(PH), intracranial HTN, and secondary HTN. In addition, 
the study types included a combination of retrospective 
and observational designs, along with secondary analyses 
of clinical trials, cross-sectional studies, and development 
or evaluation studies. Moreover, the studies examined 
different numbers of people, from small groups of less than 
100 to large sets of real-world data with over 20,000 people.
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For Non-Invasive Hypertension Diagnosis
Overall, 12 studies were found, focusing on non-
invasive ways to diagnose HTN (e.g., ECG, PPG, or 
wearables).27,31-34,39,41,46,48,49,52,56 Most of them reported 
pretty impressive accuracy, anywhere from 71% up to 
99%. Nonetheless, a closer look revealed that four of 
these studies had some issues. Either their sample sizes 
were tiny, or they did not explain their design and timing 
clearly, making it harder to trust that their results would 
hold up in the real world.

Pulmonary hypertension: Fifteen studies addressed 
PH detection using echocardiography, chest 
X-rays, cardiac magnetic resonance imaging, or 
phonocardiograms.15,19,21,23,26-30,34,35,59 Overall, these studies 
showed very good diagnostic performance (with an 
area under the curve [AUC] of up to 0.97), and most of 
them were at low risk of bias as assessed by QUADAS-2. 
However, 3 studies had limitations in patient selection or 
lacked external validation, leading to an “unclear” risk in 
certain domains.

Secondary hypertension: Six of these studies used 
AI to differentiate between different types of high BP 
(e.g., to identify secondary HTN or subtypes such as 
primary aldosteronism and kidney problems).17,29,38,42,43,58 
Most of them were retrospective in nature. Although 
methodological quality was generally acceptable, 2 studies 

demonstrated concerns regarding incomplete data and 
generalizability.

Intracranial hypertension: Two studies investigated 
intracranial HTN using waveform analysis and PPG-based 
models.16,63 Both studies reported promising diagnostic 
accuracy ( > 90%), but their small sample sizes limited the 
certainty of evidence. The QUADAS-2 assessment rated 
them as low risk in the index test and reference standard 
but unclear in selecting patients.

Population-level screening and risk prediction: Fifteen 
studies examined the prediction of HTN risk from 
large survey or population-based data.20,36,37,40,41,44-47,51,53-

57,61 They represented moderate-to-high diagnostic 
accuracy, although many of them were considered to have 
limitations in either patient selection or flow/timing due 
to reliance on self-reported or single-institution data.

Artificial Intelligence Techniques and Applications
The investigated studies used different AI setups. RFs, 
support vector machines (SVMs), DTs, and gradient 
boosting (old-school ML) were utilized in at least 18 
studies.15,19,20,25,29,31,33-36,39-42,44-46 Moreover, DL methods 
(e.g., convolutional neural networks, residual network, 
and InceptionV3) and semi-supervised models were 
employed in 20 studies.16-18,21,23,26-28,30,32,35,48-56,58,59,61 
Additionally, 12 studies included clinical information, 

Figure 1. PRISMA Flow Diagram of Study Selection Process. Note. PRISMA: Preferred Reporting Framework for Systematic Reviews and Meta-Analyses
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Table 1. Summary of Studies on the Application of AI in Hypertension Diagnosis

Authors/Year
Study Type and 
Population

AI technique(s) Used 
in Studies

Purpose of the AI 
Application

Key Findings Limitations and Challenges

Priya et al 
(2021)15

A retrospective study of 
72 patients, including 
42 with pulmonary 
hypertension (PH) and 30 
healthy controls

Radiomics with 
texture feature 
extraction from 
cardiac magnetic 
resonance imaging 
(MRI) combined 
with various 
machine learning 
(ML) classifiers 
(including multilayer 
perceptron)

Non-invasive 
diagnosis of PH 
through cardiac MRI 
texture analysis

The best model (multilayer 
perceptron) achieved an AUC of 
0.862 (78% ACC) in the primary 
analysis and an AUC of 0.918 
(80% ACC) in the subgroup 
with preserved left ventricular 
function.

- Small sample size
- Variability in model 
performance depending on 
classifier and feature selection 
methods

Quachtran
(2016)16

A retrospective study on 
60 patients monitored for 
intracranial pressure over 
30-minute intervals

Deep learning (DL) 
applied to waveform 
morphology analysis

Diagnosis/detection 
of intracranial 
HTN by predicting 
elevated intracranial 
pressure

The DL model achieved 
approximately 92% ACC in 
detecting intracranial HTN.

- Small sample size
- Need for further validation on 
larger and diverse populations

Wu et al
(2013)17

A cross-sectional 
study using real-world 
electronic health 
record (EHR) data 
from11,961 hypertensive 
patients(2013-2019)

A two-stage 
DL framework 
withnatural language 
processing,label 
embedding, 
andattention 
mechanisms

Provision of 
supportfor differential 
diagnosisofsecondary 
HTN by integrating 
textual (e.g., 
symptoms) and 
numerical (e.g., lab 
results) data

The model accurately identified 
common types of secondary 
HTN by combining text and 
numerical data from patient 
records. It outperformed 
doctors and standard methods. 
However, it needs further testing 
in real clinical settings.

- Lack of real-world EHR data or 
incomplete entries
- Lack of testing generalizability 
to other hospitals or healthcare 
systems
- Need for further validation 
inprospective clinical settings

Yoshihara 
et al
(2024)18

A secondary analysis of 
a clinical trial involving 
7,710 patients with 
influenza-like symptoms 
from 64 primary care 
clinics in Japan

DL with multi-
instance 
convolutional neural 
networks (CNNs)

Diagnosisof HTN 
from pharyngeal 
images

The results showed that DL 
can accurately detect HTN 
from throat images, thereby 
performing better than 
traditional methods and working 
well across all age and gender 
groups.

- Reliance on data from patients 
with influenza-like symptoms
- Lack of general population
- Need for further validation in 
broader clinical settings and 
among diverse populations

Zhu et al 
(2020)19

An observational study 
on 275 patients with PH 
who underwent both 
echocardiography and 
right heart catheterization

Nine ML models, 
including LogitBoost 
and decision tree 
(DT)

Classification of PH 
as pre-capillary or 
post-capillary using 
echocardiographic 
data

The results demonstrated that 
this method can accurately 
distinguish between types of PH 
without the need for invasive 
procedures, such as cardiac 
catheterization. However, 
further studies are needed to 
validate its effectiveness across 
different patient populations.

- Lack of external validation
- Limited to a specific patient 
population
- Need for further comparison 
with other noninvasive 
diagnostic methods

Montagna 
et al
(2022)20

An observational study 
analyzing questionnaire 
data from 20,206 
individuals collected 
during World HTN Day 
(2015-2019)

Five ML algorithms 
were tested, 
including random 
forest (RF) with 
different data 
balancing techniques

Improvement of 
HTN risk detection 
and prediction in 
population screening

RF revealed balanced sensitivity 
(SE: 0.818) and specificity (SP: 
0.629), better SP than current 
medical protocols but lower SE; 
no single best algorithm was 
found.

- Trade-off between SE and SP
- Need for more accurate data 
and additional features to 
improve model performance
- Difficulty in population-level 
detection

Zou et al 
(2020)21

A retrospective study on 
762 patients (405 PH and 
357 controls)

DL (ResNet50, 
Xception, and 
Inception V3)

Detection of PH 
from chest X-rays 
and prediction of 
pulmonary artery 
systolic pressure 
(PASP)

The best model (Inception 
V3) achieved high ACC in 
classification (AUC: 0.970 
internal, 0.967 external) and 
good PASP prediction (MAE: 
7.45 internal, 9.95 external); DL 
outperformed expert radiologist 
manual classification.

- Need for prospective validation
- A slight drop in external test 
ACC 

Li (2021)22

A review study including 
no specific population, 
as it summarized existing 
research on portal HTN 
diagnosis

Various AI techniques 
(not specified 
individually) 
applied in imaging 
and data analysis 
for noninvasive 
diagnosis

Noninvasive 
diagnosis and 
risk monitoring of 
portal HTN and 
gastroesophageal 
varices, aiming to 
personalize patient 
care

AI shows promise in 
transforming clinical practice by 
enabling accurate, noninvasive 
diagnosis and monitoring, 
potentially reducing the need for 
invasive, costly procedures.

- Challenges related to 
integrating AI in clinical 
workflows
- Need for using large datasets 
and validation and ensuring 
personalized, timely care

Kusunose 
et al
(2022)23

An observational study 
with 142 patients 
having scleroderma or 
mixed connective tissue 
disease who underwent 
6-minute walk stress 
echocardiography

A DL model applied 
to chest X-ray 
images to predict PH 
probability

Detection of 
exercise-induced PH 
(EIPH) non-invasively 
using chest X-rays

The DL model probability of 
PH was significantly higher in 
patients with EIPH.
Adding DL-predicted PH 
probability improved the 
predictive ACC for EIPH (AUC 
increased from 0.65 to 0.74).
Gender, resting mean 
pulmonary artery pressure, 
and DL model output were 
independent predictors of EIPH.

- Lack of transparency
- Implied challenges, including 
limited sample size
- Need for further validation in 
broader clinical settings
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Authors/Year
Study Type and 
Population

AI technique(s) Used 
in Studies

Purpose of the AI 
Application

Key Findings Limitations and Challenges

Juyal et al 
(2024)24

A review article 
analyzing the role of AI 
and wearable technology 
in HTN management; no 
specific population was 
studied.

ML algorithms 
analyzing 
physiological, 
lifestyle, and 
genetic data; 
adaptive algorithms 
for personalized 
treatment 
optimization

Early and accurate 
diagnosis of HTN, 
personalized 
treatment planning, 
and real-time 
blood pressure (BP) 
monitoring

AI models can detect subtle 
risk patterns for HTN and 
optimize treatments based 
on individual responses, and 
wearables enable continuous 
health monitoring for timely 
intervention.

- Lack of specifying detailed 
limitations
- Implied challenges, including 
data diversity, integration of 
multi-source data, and clinical 
validation of AI models

Jusic et al 
(2023)25

An observational case-
control study including 
174 participants (89 with 
essential HTN and 85 
controls)

ML – support vector 
machine (SVM)

Diagnosis of essential 
HTN by integrating 
circulating micro 
ribonucleic acids 
(miRNAs) and 
clinical risk factors

The study found several miRNAs 
that were lower in people with 
high BP. Using these miRNAs 
along with clinical risk factors 
(e.g., gender and smoking), 
the ML model (SVM) could 
accurately identify patients 
with essential HTN. The model 
displayed high ACC (90%) and 
balanced SE and SP, implying 
that it was beneficial at both 
detecting HTN and ruling it out. 
However, it still needs to be 
tested on more patients before it 
can be used in clinics.

- Need for further validation on 
independent patient cohorts 
before clinical use

Han et al 
(2023)26

A retrospective study 
using 3,255 preoperative 
chest radiographs, 
including 1,174 cases 
with congenital heart 
disease (CHD) and 2,081 
cases without CHD

ResNet18 (pretrained 
on ImageNet) 
compared with 
other models 
(DenseNet121, 
MobileNetv2, and 
MobileViT)

Automatic diagnosis 
of CHD and PAH 
associated with 
CHD (PAH-CHD) 
from chest X-rays; 
evaluation if AI can 
improve radiologists’ 
ACC

The AI accurately detected CHD 
and reasonably identified PAH.
It performed better than 
radiologists.
With AI assistance, radiologists 
improved their diagnostic ACC.

- Less ACC of PAH-CHD 
diagnosis compared to CHD
- Use of a retrospective design
- Need for further validation in 
clinical settings

Guo et al
(2024)27

A development and 
evaluation study using 
~6000 labeled and 
~169,000 unlabeled 
phonocardiogram (PCG) 
recordings; test set 
included 196 patients

Deep CNNs 
trained in a semi-
supervised manner; 
GradCAM + + for 
interpretability

Screening and 
early detection of 
PH by identifying 
elevated PASP ( ≥ 40 
mmHg) using digital 
stethoscope data

The model could detect PH with 
71% SE and 73% SP
It performed better at specific 
chest locations.

- Moderate diagnostic 
performance (AUC < 0.8)
Dependent on the quality of 
PCG recordings
- Need for further validation in 
diverse populations

Diller et al
(2022)28

An observational study, 
including
450 pulmonary arterial 
HTN (PAH) patients, 308 
with right ventricular 
dilation without PAH, 67 
healthy controls

DL CNNs using 
echocardiographic 
images and estimated 
right ventricular 
systolic pressure

Detection of PAH 
accurately
Prediction of patient 
prognosis (mortality 
risk)

The DL model detected PAH 
with 97.6% ACC and predicted 
patient risk and expert doctors. 
It also improved diagnosis and 
prognosis using standard heart 
ultrasound.

- Lack of transparency in the 
article
- Need for validation in broader 
and more diverse populations

Buffolo et al 
(2021)29

A retrospective study on 
4,059 patients with HTN

ML algorithms

Accurate prediction 
of primary 
aldosteronism (PA) 
and its surgically 
treatable form 
(unilateral PA)

The ML model accurately 
predicted PA and its surgically 
treatable form with high ACC. It 
could identify about one-third 
of patients as low risk, allowing 
them to safely skip further 
screening.

- Lack of transparency in the 
article
- Need for further validation in 
diverse populations

Aras et al 
(2022)30

A retrospective study 
of 24,470 adults who 
had electrocardiogram 
(ECG) and either right 
heart catheterization or 
echocardiogram within 
90 days

Deep CNNs
Detection of PH and 
its subtypes using 12-
lead ECG data

A DL model could accurately 
detect PH using only ECG data.

- Need for 12-lead ECG data
- Need for further validation in 
diverse clinical settings

Angelaki et al
(2022)31

An observational study 
with 1,091 individuals 
without cardiovascular 
disease (CVD), classified 
as hypertensive or 
normotensive

The RF ML model 
using clinical and 
ECG-derived features

Opportunistic 
detection of HTN 
using ECG and 
clinical data

The ML model effectively 
detected HTN using ECG and 
basic body measurements. It 
could help identify many people 
with undiagnosed high BP, 
reducing cardiovascular risk.

- Inclusion of a limited 
population (patients without 
CVD)
- Need for further validation

Adeleke et al 
(2024)32

A retrospective analysis 
of 1,723 staff members 
at Bowen University, 
Nigeria, between 2018 
and 2022

K-means clustering 
for analyzing BP data

Evaluation of 
the impact of a 
workplace HTN 
screening program 
using ML

Using ML to check employee 
health over time was a useful 
and practical way to find and 
manage high BP at work.

- Limitation of data (from a 
single institution)
- Unavailability of data for 2020 
due to the COVID-19 lockdown
- Lack of assessing cost-
effectiveness and practical 
challenges of implementation

Table 1. Continued.
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Authors/Year
Study Type and 
Population

AI technique(s) Used 
in Studies

Purpose of the AI 
Application

Key Findings Limitations and Challenges

Angelaki et al 
(2025)33

An observational 
prospective study with 
1,254 subjects (average 
age ~60 years), both 
hypertensive and 
normotensive, with no 
CVD

The RF ML model on 
single-lead ECG data

Detection of arterial 
HTN using single-
lead ECGs as a 
proof of concept for 
wearable devices

The findings revealed that even 
simple ECG signals (e.g., those 
from a smartwatch) could help 
identify hidden HTN, supporting 
early detection and awareness.

- Need for validation with data 
from actual wearable devices 
(e.g., smartwatches)

Martinez-
Ríos et al 
(2022)34

A study analyzing 
photoplethysmography 
(PPG) signals and clinical 
data for HTN detection 
(population details not 
specified)

Wavelet scattering 
transform (WST) for 
feature extraction 
from PPG signals 
combined with SVM 
classifiers; Early and 
late fusion methods 
for combining data 
types

Early detection of 
HTN using non-
invasive PPG signals 
and clinical data

Using WST-extracted PPG 
features with SVM achieved 
71.42% ACC and 76% F1-score 
for classifying normotension vs. 
pre-HTN; combining PPG and 
clinical data via fusion did not 
improve performance.

- Need for high-quality PPG 
signals
- Lack of detection ACC 
enhancement with the fusion of 
data types
- Avoidance of DL methods 
due to complexity and lack of 
interpretability

Anand et al 
(2024)35

A retrospective analysis 
of 7,853 patients with 
heart catheterization and 
echocardiography data

Gradient boosting ML 
model

Prediction 
of PH using 
echocardiographic 
data without 
relying on tricuspid 
regurgitation velocity

The model accurately identified 
most patients with PH, correctly 
detecting 88% of true cases, but 
was less effective at ruling out 
those without the condition.

- Moderate SP and NPV
- Exclusion of some direct heart 
pressure measures
- Need for further validation

Golino et al 
(2014)36

An observational cross-
sectional study including 
400 undergraduate 
students (56.3% women), 
age 16–63, Brazil

Classification tree (an 
ML algorithm in R, 
15 random trees for 
each gender)

Prediction of 
increased BP using 
anthropometric 
measures (BMI, WC, 
HC, and WHR)

Women: Best model 
(BMI + WC + WHR) SE 80.86%, 
SP 81.22% in training; dropped 
to 45.65% and 65.15% in 
testing
Men: Best model 
(BMI + WC + HC + WHR) SE 
72%, SP 86.25% in training; 
dropped to 58.38% and 69.70% 
in testing
Classification trees 
outperformed LR.

- Small, non-representative 
convenience sample (university 
students)
- Imbalanced dataset (few 
women with HTN)
- A decline in predictive 
performance in the test 
set, indicating limited 
generalizability
- Cross-sectional design
- Lack of validation in broader 
populations

Seffens et al 
(2015)37

A multicohort clinical 
study using the Minority 
Health Genomics and 
Translational Research 
Repository Database; 
self-reported African 
American participants 
and related cohorts

NNs (for missing-data 
imputation) and data 
mining classification 
tools (association rule 
generation)

Imputation of missing 
phenotype data and 
classification of HTN 
case/control status 
in a large genomic/
phenotypic database

NNs improved dataset 
completeness and increased 
power for detecting associations 
between phenotype variables 
and HTN status. Data mining 
produced association rules, 
highlighting links between 
clinical/phenotypic factors and 
HTN.

- A focus on data imputation 
rather than direct clinical 
diagnosis
- Limited external validation
- Lack of generalizability beyond 
African American cohorts
- Modest genomic associations 
despite improved imputation

Ren et al 
(2019)38

A retrospective analysis 
using electronic health 
records of 35,332 HTN 
patients

Hybrid NN (BiLSTM 
+ autoencoder)

Prediction of kidney 
disease in patients 
with HTN by 
integrating textual 
and numerical EHR 
data

It achieved 89.7% ACC, 
outperforming traditional 
statistical models and baseline 
neural systems.

- A limited focus on kidney 
disease as a complication of 
HTN
- Lack of data generalizability 
beyond the applied dataset
- Need for external validation in 
diverse populations

Nour and 
Polat (2020)39

An observational study; 
an HTN dataset with 8 
personal features (gender, 
age, height, weight, 
SBP, DBP, HR, and 
BMI); 4 classes (normal, 
pre-HTN, stage-1, and 
stage-2 HTN)

C4.5 DT, RF, linear 
discriminant analysis 
(LDA), and linear 
SVM

Automatic 
classification of HTN 
types using personal 
demographic and 
physiological 
features

It achieved 99.5% ACC with 
DT and RF, 96.3% with LDA, 
and 92.7% with SVM; it 
demonstrated the feasibility 
of ML in automatic HTN 
classification.

- Lack of full description of 
dataset characteristics (size and 
source)
- Possible overfitting given very 
high ACC
- Lack of external/clinical 
validation
- Limited generalizability beyond 
the dataset

López-
Martínez et 
al (2020)40

A retrospective analysis 
of NHANES data 
(2007-2016); 24,434 
participants (69.7% non-
hypertensive and 30.3% 
hypertensive)

An artificial NN 
(ANN) classification 
model

Prediction of 
HTN based on 
demographic, 
lifestyle, and 
comorbidity factors 
(gender, race, BMI, 
age, smoking, 
kidney disease, and 
diabetes)

It achieved an AUC of 0.77 
(95% CI 0.75–0.79), an SE 
of 40%, an SP of 87%, and 
a precision of 57.8%. It 
outperformed the prior statistical 
model (AUC of 0.73).

- Imbalanced dataset (more non-
hypertensives) 
- Relatively low sensitivity 
- Need for external/clinical 
validation before clinical 
adoption

Table 1. Continued.
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Authors/Year
Study Type and 
Population

AI technique(s) Used 
in Studies

Purpose of the AI 
Application

Key Findings Limitations and Challenges

Islam et al 
(2022)41

A retrospective, 
population-level study 
using harmonized 
Demographic and 
Health Surveys data 
from Bangladesh, Nepal, 
and India (N = 818,603; 
82,748 hypertensive, 
10.1%)

DT, RF, gradient 
boosting machine, 
XGBoost, logistic 
regression (LR), and 
LDA

Prediction of HTN 
and identification 
of key associated 
factors in South 
Asian populations

XGBoost, GBM, LR, and LDA 
achieved 90% ACC, 100% 
recall, and 95% F1-score; RF 
achieved 89% ACC, and 83% 
DT. Age and BMI were the 
strongest predictors.

- Reliance of models mainly on 
survey/self-reported data
- Lack of the inclusion of 
biochemical markers
- Uncertainty in generalizability 
outside South Asia
- Need for real-world validation

Shih et al 
(2022)42

Two retrospective cohorts 
in Taiwan (970 patients 
for model development 
and internal validation 
and 464 patients for 
external validation)

LR, RF, XGBoost, and 
ANNs

Prediction of white-
coat HTN and white-
coat uncontrolled 
HTN from outpatient 
visit data

RF performed best 
(AUROC = 0.884, SE = 0.619, 
SP = 0.887, ACC = 0.819, NPV 
= 0.872). Top predictors: office 
DBP, office SBP, smoking status, 
estimated glomerular filtration 
rate, and fasting glucose

- Need for conducting the study 
on other populations than 
Taiwanese cohorts
- Limited external validation to 
one cohort
- Need for prospective validation 
for generalizability

Orozco 
Torres et al 
(2022)43

A population-based study
Multilayer feed-
forward NNs with 
backpropagation

Diagnosis of HTN 
using physiological 
and lifestyle factors 
(e.g., obesity, 
diabetes, smoking, 
stress, physical 
inactivity, and the 
like)

It achieved ~90% effectiveness 
in diagnosing HTN risk from 
physiological data.

- Lack of detailed information on 
sample size
– Need for external validation
- Need for testing on more 
diverse populations and clinical 
settings

Fang et al 
(2023)44

An observational study; 
population details not 
fully specified in the 
abstract (Chinese cohort)

Hybrid ML 
combining K-nearest 
neighbor (KNN) and 
LightGBM

Prediction of 
individual risk of 
developing HTN 
within the next 
five years based on 
demographic and 
blood indicators

It achieved ACC > 86% and 
recall > 92%, demonstrating 
reliable risk prediction.

- Lack of full description of 
population and dataset details
- Need for external validation
- Uncertainty in applicability to 
non-Chinese populations

Kurniawan 
et al 
(2024)45

An observational study 
among Indonesian adults 
(population details in 
full text)

DT, RF, gradient 
boosting, and LR

Development and 
validation of an HTN 
risk prediction model 
using modifiable risk 
factors

LR achieved the best 
performance: AUC of 0.829, 
ACC of 89.6%, recall of 0.896, 
precision of 0.878, and F1 score 
of 0.877.

- Need for external validation
- Limited generalizability outside 
the Indonesian population
- Lack of fully specified dataset 
details in the abstract

Sakka et al 
(2020)46

A case study at Petra 
University, Jordan, with a 
dataset of 31,500 patients 
(12,658 hypertensive and 
18,842 non-hypertensive)

Synthetic minority 
oversampling 
technique (SMOTE) 
with KNN, DT, and 
other ML classifiers

Prediction of 
HTN risk using 
noninvasive, 
inexpensive patient 
data from university 
health records

SMOTE-KNN achieved 83.9% 
ACC, 85.1% SP, 83.3% SE, and 
89.6% AUC with 10-fold cross-
validation (CV).

- Reliance on a single-institution 
dataset (Petra University)
- Uncertainty in generalizability 
of results to broader populations
- Lack of external validation

Islam et al 
(2023)47

A cross-sectional study, 
Ethiopia; 612 respondents 
with 27 risk factors

LR, ANN, RF, and 
XGBoost (Boruta 
feature selection 
and SHAP for 
explainability)

Prediction of 
patients at risk of 
developing HTN and 
identification of key 
risk factors

XGBoost achieved the best 
performance: ACC of 88.81%, 
precision of 89.62%, recall of 
97.04%, F1-score of 93.18%, 
and AUC of 0.894; SHAP 
analysis highlighted age, BMI, 
diabetes, salt intake, alcohol, 
smoking, and history of HTN as 
key predictors.

- Small sample size (n = 612)
- Lack of generalizability of 
findings to populations other 
than the Ethiopian population
- Need for external validation 
in larger, diverse cohorts for 
generalizability

El-Dahshan 
et al (2023)48

A development and 
validation study; 
evaluation of two public 
PPG datasets (PPG-BP 
and MIMIC-II)

ExHyptNet 
(EfficientNetB3 for 
feature extraction, 
Grad-CAM for 
explainability, 
and XGBoost 
and extremely 
randomized trees for 
classification)

Development of 
an explainable AI 
model for automatic 
detection and 
classification of HTN 
using PPG signals

The model achieved 100% 
detection ACC across multiple 
validation methods (holdout, 
10-fold CV, and leave-one-out); 
it provided interpretable outputs 
with Grad-CAM.

- Limited evaluation (only public 
datasets rather than prospective 
clinical data)
- Extremely high performance, 
raising concern for overfitting
- Need for further testing 
regarding generalizability to 
real-world settings

Esmaelpoor 
et al (2020)49

A development and 
evaluation study; PPG 
data from 200 subjects

Multistage deep NN 
(CNNs for feature 
extraction and 
LSTM for temporal 
dependencies)

Estimation of SBP 
and DBP from PPG 
signals

It met the AAMI standard 
and achieved Grade A (BHS 
standard) for both SBP and DBP 
estimation; it had consistent and 
accurate predictions.

- Limited dataset evaluation (200 
subjects)
- Uncertainty in generalizability 
to larger/diverse populations
-Need for validation in real-
world/clinical settings

Chen et al 
(2022)50

A development and 
evaluation study; dataset: 
MIMIC-II, 1,562 subjects 
(normal, hypertensive, 
and hypotensive)

DL: Receptive field 
parallel attention 
shrinkage network 
with the BP range 
constraint

Cuff-less and 
continuous 
estimation of SBP 
and DBP from PPG 
signals

Achieved MAE of 2.26/2.15 
mmHg (SBP) and 1.63/1.59 
mmHg (DBP); it outperformed 
state-of-the-art methods and was 
robust against fluctuations.

- Limitation in testing (only on 
the MIMIC-II dataset)
- Lack of validation regarding 
real-world generalizability 
and deployment in clinical 
monitoring systems

Table 1. Continued.
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Authors/Year
Study Type and 
Population

AI technique(s) Used 
in Studies

Purpose of the AI 
Application

Key Findings Limitations and Challenges

Evdochim et 
al (2022)51

A development study; 
359 PPG recordings from 
open-source databases

ML models

HTN detection 
by analyzing 
PPG waveform 
morphology (ANC 
Test™)

It had an ACC of systolic HTN 
detection of ~70%, and a 
maximum of 72.9%.

- Variability in PPG acquisition 
standards across databases
- Relatively small and 
heterogeneous dataset
- Limited generalizability

Soh et al 
(2020)52

A development and 
evaluation study; ECG 
data from the MIT-BIH 
normal sinus rhythm and 
SHAREE database

Empirical mode 
decomposition 
for feature 
extraction + nonlinear 
features + k-NN 
classifier

Detection of HTN 
and masked HTN 
using ECG signals

It achieved 97.7% ACC with 
10-fold CV.

- Evaluation limited to two 
datasets
- Lack of external clinical 
validation
- Probable variability with real-
world ECG acquisition

Rajput et al 
(2019)53

A development study; 
139 subjects (SHAREE 
database, Physionet); 
ECG signals segmented 
into 5-minute epochs

Optimal Orthogonal 
Wavelet Filter 
Bank + Student’s t-test 
feature selection 
→ Hypertension 
diagnosis index (HDI)

Automated detection 
of low-risk vs. high-
risk HTN using ECG 
signals

HDI using LOGE + SFD features 
effectively discriminated LRHT 
vs. HRHT; it had encouraging 
performance for ICU use.

- Small dataset (139 subjects)
- Limited population (the 
HRHT group included patients 
with comorbid myocardial 
infarction, stroke, and syncope, 
probably confounding pure HTN 
detection)
- Need for external validation on 
larger datasets

Rajput et al 
(2022)54

An experimental 
study using 
ballistocardiography 
(BCG) signals

Continuous wavelet 
transforms for feature 
extraction + 2D CNNs

Automated detection 
of HTN from BCG 
signals

It achieved 86.14% 
classification ACC using 10-
fold CV.

- Limited dataset/sample details 
in abstract
- Need for external/clinical 
validation
- Lack of testing real-world 
applicability because of the first 
use of 2D-CNN with BCG

Huang et al 
(2021)55

A retrospective analysis 
using PPG and ECG 
signals from the MIMIC-II 
dataset

MLP-mixer–based 
deep NNs (MLP-
BP, gMLP-BP, and 
MLPlstm-BP); Multi-
filter multi-channel 
preprocessing

Estimation of BP 
(cuff-less) for HTN 
monitoring and 
diagnosis

MLPlstm-BP achieved an 
MAE of 3.52 mmHg (SBP) 
and 2.13 mmHg (DBP); SD 
of 5.10 mmHg (SBP), 3.07 
mmHg (DBP); it met the highest 
standards of AAMI and BHS; 
moreover, it outperformed state-
of-the-art models.

- Testing only on the MIMIC-II 
dataset
- Lack of validation of 
generalizability to diverse real-
world populations and wearable 
devices 
- Need for prospective clinical 
trials

Miao et al 
(2020)56

A retrospective analysis 
using the public MIMIC 
waveform database 
(ICU patients) and an 
independent dataset of 
arrhythmia patients

A DL model 
combining ResNet 
and LSTM

Continuous, cuff-
less BP estimation 
using one-channel 
ECG signals for 
HTN detection and 
monitoring

It achieved an estimation error 
of 0.07 ± 7.77 mmHg (MAP) 
and 0.01 ± 6.29 mmHg (DBP); 
compliant with AAMI standards; 
Grade A (MAP, DBP) and Grade 
B (SBP) per BHS standards; 
validated on independent 
arrhythmia dataset with similarly 
low errors.

- Focus on ICU/arrhythmia 
populations
- Need for real-world wearable 
device validation 
- Less ACC of SBP estimation 
(Grade B)

Kublanov et 
al (2017)57

An observational study; 
70 participants (30 
healthy and 40 with stage 
II–III HTN); short-term 
HRV signals

Linear and quadratic 
discriminant analysis, 
k-NN, SVM (radial 
basis function), DT, 
and Naïve Bayes

Diagnosis of arterial 
HTN using HRV-
derived features

Discriminant analysis achieved 
the highest ACC; feature 
selection with non-correlated 
sets performed better than PCA-
based features.

- Small sample size
- Limitation of the model to HRV 
signals
- Need for external validation 
in larger and more diverse 
populations

Kandil et al 
(2019)58

An observational study; 
66 subjects (balanced 
dataset: normal vs. 
hypertensive); brain MRA 
scans

Three-dimensional 
CNNs for 
cerebrovascular 
segmentation + ANN 
classifiers

Early detection 
of HTN through 
analysis of 
cerebrovascular 
alterations (diameter 
and tortuosity)

It achieved 90.9% ACC in 
distinguishing hypertensive vs. 
normal subjects; it demonstrated 
feasibility of predicting HTN 
before onset.

- Small sample size
- Reliance on MRA imaging 
(costly and not widely available 
for screening)
- Need for external validation for 
broader clinical utility

Gudigar et al 
(2019)59

An observational study 
using echocardiography 
images

Globally weighted 
local binary pattern 
(LBP) + entropy 
features with the 
SVM classifier

Development 
of a CAD tool 
for automated 
identification of 
PH from cardiac 
ultrasound images

It achieved ~92% classification 
ACC; the proposed method 
outperformed other LBP 
variants.

- Lack of detailed data in 
abstract regarding the dataset 
and sample size
- Limitation in the use of method 
(echocardiography imaging)
- Need for external validation for 
clinical adoption

Raghavendra 
et al (2022)60

A development study; 
ultrasound images of 
patients with HTN

Contourlet and 
shearlet feature 
extraction + locality 
sensitive discriminant 
analysis for 
dimension reduction 
+ DT classifier

Automated detection 
of early structural 
heart muscle 
changes induced by 
HTN from ultrasound

It showed high ACC in 
discriminating hypertensive 
structural changes using only 2 
features; it was proposed as a 
CAD tool for clinics.

- Lack of the inclusion of the 
sample size in the abstract
- Testing only on a specific 
population
- Need for validation in diverse 
datasets

Table 1. Continued.
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images, ECG, phonocardiograms (PCG), or PPG data in 
mixed ways.17,19,27,29,34,35,38,42,44,48,49,56

These models were used to evaluate HTN using 
non-invasive methods,27,31-34,39,46-49,52,56 sort out kinds of 
pulmonary HTN,27,31-34,39,46-49,52,56 spot early signs with 
images and wearables,14,15,19,21,23,26-30,35 and detect through 
imaging and wearable technologies earlier.18,24,27,33 They 
were also utilized to differentiate secondary HTN from 
essential HTN17,25,29,38,42,43 and guess the risks or predict 
how things will proceed.17,35,36,40,41,44-47

According to QUADAS-2 (Table 2), most studies had 
the lowest risk of error in the index and reference standard 
test sections. Conversely, some lacked external validation; 
thus, their risk was assessed as “uncertain” in the flow and 
timing sections.

Diagnostic Performance
Diagnostic performance was generally high across the 
included studies. The reported accuracy ranged from 71% 
(34) to over 97%.28,52 For example, Zou et al21 achieved 
AUC values of 0.97 in pulmonary HTN detection from 
chest X-rays, and Jusic et al25 reported ~90% accuracy for 
essential HTN classification using microRNA-based SVM 
models. In several instances, AI performance exceeded 
that of human experts; for example, Han et al26 and Diller 
et al28 found that AI assistance improved or outperformed 
radiologists in image interpretation.

Based on quality assessment, most high-performing 
studies were categorized as low risk of bias; however, 
those with small datasets (e.g., Priya et al 15 and Quachtran 
et al16) or retrospective designs were downgraded to 
“unclear” in patient selection or flow/timing domains.

Limitations and Challenges
Although the results were promising, several 
methodological issues remained:

Small sample sizes made the results ungeneralizable 
across more than 10 studies.15,16,23,36,52,53,57,58,63 In addition, 
lack of external validation was a common problem, 
especially in studies that used imaging data and 

EHRs.17,19,21,29,31,34,35

Moreover, data heterogeneity and incomplete 
information, especially in models built on EHRs, reduced 
confidence in the results.17,31,38 Additionally, model 
interpretability was a barrier for DL models.27,34,48,49

The risk of bias and overfitting in data collected from a 
single institution was also identified as well.20,32,46

Overall, the QUADAS-2 evaluation revealed that 
most studies were of acceptable methodological quality. 
However, future research should focus on large-scale 
prospective validation, standardized reporting, and the 
use of explainable AI to enhance the clinical application 
of these technologies.

Quality Assessment
According to the obtained data (Table 2), the majority of 
included studies showed a low risk of bias in the domains 
of patient selection, index test, and reference standard. 
Specifically, 38 studies (76%) were rated as low risk 
across these domains. In contrast, in the domain of flow 
and timing, 14 studies (28%) were judged as “unclear” 
due to insufficient reporting. Additionally, some 
methodological limitations (e.g., small sample size, lack 
of external validation, or incomplete patient information) 
raised concerns about potential bias in 8 studies (16%). 
Even though these problems were present, over two-
thirds of the studies were performed well and provided 
trustworthy information, highlighting the validity of the 
overall evidence.

Discussion
This review thoroughly delved into how AI is being used 
to diagnose and handle high BP, along with its different 
types (e.g., primary, pulmonary, intracranial, and 
secondary HTN). The studies revealed that AI methods 
go from basic ML models (e.g., SVMs and RFs) to more 
advanced DL setups (e.g., convolutional neural networks) 
and models that mix clinical info with imaging data. The 
findings confirmed that AI has real potential to improve 
diagnostic accuracy, early detection, risk stratification, 

Authors/Year
Study Type and 
Population

AI technique(s) Used 
in Studies

Purpose of the AI 
Application

Key Findings Limitations and Challenges

Zhang et al
(2020)61

A cross-sectional study; 
625 subjects, 1,222 high-
quality fundus images 
(Henan, China)

DL NN models

Prediction of HTN, 
hyperglycemia, 
dyslipidemia, and 
CVD risk factors 
from retinal fundus 
images

AUC for HTN of 0.766; 
hyperglycemia of 0.880; 
dyslipidemia of 0.703; it also 
predicted hematocrit and 
MCHC with AUC > 0.7.

- Moderate performance for 
HTN prediction
- Limitation of dataset (only the 
rural Chinese population)
- Uncertainty in generalizability

Abbas and 
Ibrahim 
(2020)62

A development and 
evaluation study; 4,270 
retinal fundus images 
(3 public datasets + 1 
private)

Dense feature 
transform 
layer + trained feature 
layer + deep residual 
learning (CNN)

Automated detection 
of hypertensive 
retinopathy (HR) 
from retinal fundus 
images

It achieved an SE of 93%, an SP 
of 95%, an ACC of 95%, and 
an AUC of 0.96 (10-fold CV); 
it outperformed state-of-the-art 
methods.

- Focus on retinal HR 
detection rather than direct BP 
measurement
- Need for validation in 
prospective clinical settings

Note. SBP: Systolic blood pressure; DBP: Diastolic blood pressure; AUC: Area under the curve; CI: Confidence interval; COVID-19: Coronavirus disease 2019; 
LSTM: Long short-term memory; MCHC: Mean corpuscular hemoglobin concentration; AI: Artificial intelligence; ICU: Intensive care unit; HR: Heart rate; BMI: 
Body mass index; WC: Waist circumference; HC: Hip circumference; WHR: Waist-to-hip ratio; HRV: Heart rate variability; ACC: Accuracy; MRA: Magnetic 
resonance angiogram; ResNet: Residual network; SHAP: SHapley Additive exPlanations; Grad-CAM: Gradient-weighted class activation mapping; MAE: Mean 
absolute error; GBM: Gradient boosting; XGBoost: Extreme gradient boosting; NPV: Negative predictive value; AAMI: Association for the Advancement of 
Medical Instrumentation; PCA: Principal component analysis.

Table 1. Continued.
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Table 2. Quality Assessment of Included Studies Using QUADAS-2

Authors/Year
Patient 
Selection

Index Test
Reference 
Standard

Flow and 
Timing

Comments/Justification

Priya et al (2021)15 Low Low Low Low
- Small sample (72)
- Variation in model performance in terms of the classifier

Quachtran et al (2016)16 Low Low Low Low
- Small sample
- Need for further validation

Wu et al (2013)17 Low Low Unclear Unclear
- Probable missing/incomplete entries due to the use of real-world EHRs
- Need for prospective validation

Yoshihara et al (2024)18 Low Low Low Low - Limited study population (influenza-like illness patients)

Zhu et al (2020)19 Low Low Low Low
- Lack of external validation
- Limited population

Montagna et al (2022)20 Low Low Unclear Low
- Population survey
- Trade-off sensitivity vs. specificity

Zou et al (2020)21 Low Low Low Low
- High internal/external accuracy
- Need for prospective validation

Li (2021)22 Unclear Unclear Unclear Unclear
- A review-type article
- Lack of a specific population
- Limited generalizability

Kusunose et al (2022)23 Low Low Low Low
- Small sample size (142)
- Need for broader validation

Juyal et al (2024)24 Unclear Low Unclear Unclear
- Review-type study
- Lack of original patient cohort

Jusic et al (2023)25 Low Low Low Low
- Limited sample size (174 participants)
- Need for independent validation

Han et al (2023)26 Low Low Low Low
- Retrospective nature
- Less accuracy of PAH-CHD
- Need for further clinical validation

Guo et al (2024)27 Low Low Low Low
- Moderate diagnostic performance (AUC < 0.8)
- PCG quality dependent

Diller et al (2022)28 Low Low Low Low - Need for validation in more diverse populations

Buffolo et al (2021)29 Low Low Low Low
- Inclusion of 4,059 patients
- Need for further validation

Aras et al (2022)30 Low Low Low Low
- Need for 12-lead ECG
- Need for diverse clinical validation

Angelaki et al (2022)31 Low Low Low Low
- Limitation in the inclusion of subjects (patients without CVD)
- Need for further validation

Adeleke et al (2024)32 Low Low Unclear Low
- Single institution
- Data gaps (COVID-19)

Angelaki et al (2025)33 Low Low Low Low
- Prospective proof-of-concept
- Need for validation on wearables

Martinez-Ríos et al (2022)34 Unclear Low Unclear Unclear
- Lack of population details
- Lack of improvement in performance by using the fusion method

Anand et al (2024)35 Low Low Low Low
- Moderate specificity
- Exclusion of direct heart pressure measures

Golino et al (2014)36 Low Low Unclear Low
- Small, non-representative student sample
- Limited generalizability

Seffens et al (2015)37 Low Low Unclear Low
- Focus on data imputation
- Limited external validation

Ren et al (2019)38 Low Low Low Low
- Focus on kidney disease
- Need for external validation

Nour and Polat (2020)39 Unclear Low Unclear Low
- Small dataset
- Possible overfitting
- Lack of clinical validation

López-Martínez et al F (2020)40 Low Low Unclear Low
- Imbalanced dataset
- Low sensitivity
- Need for external validation

Islam et al (2022)41 Low Low Unclear Low
- Population-level survey
- Uncertainty in generalizability outside South Asia

Shih et al (2022)42 Low Low Low Low
- Inclusion of two cohorts in Taiwan
- Limited external validation

Orozco Torres et al (2022)43 Low Low Unclear Low
- Population-based
- Limited sample details
- Need for diverse testing

https://scholar.google.com/citations?user=bZF3QO8AAAAJ&hl=en&oi=sra
https://www.nature.com/articles/s41598-024-74360-1#auth-Olumide-Adeleke-Aff1-Aff2
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and prognosis prediction in hypertensive disorders. 
However, when the quality of studies was assessed using 
the QUADAS-2 tool, it was found that the reliability 
and generalizability of results largely relied on the 
methodology and design of the studies themselves.

Diagnostic Accuracy and Performance
Most AI models demonstrated high diagnostic 
performance, with DL models for PH diagnosis from 
chest X-rays achieving AUC values up to 0.97,21 

occasionally surpassing expert radiologists.26,28 Similarly, 
SVM-based models using circulating microRNAs reached 
90% accuracy in diagnosing essential HTN.25 These high-
performing studies were generally rated as low risk of bias 
in QUADAS-2, particularly in the domains of index test 
and reference standard, strengthening confidence in their 
results.

The use of multimodal data fusion, combining 
physiological signals (e.g., PPG, PCG, ECG, and 
imaging), further enhanced diagnostic potential in 

Authors/Year
Patient 
Selection

Index Test
Reference 
Standard

Flow and 
Timing

Comments/Justification

Fang et al (2023)44 Unclear Low Unclear Low
- Chinese cohort
- Need for external validation

Kurniawan et al (2024)45 Low Low Unclear Low
- Indonesian adults
- Need for external validation

Sakka et al (2020)46 Low Low Low Low
- Single institution (Petra University)
- Lack of external validation

Islam et al (2023)47 Low Low Unclear Low
- Small sample (n = 612)
- Ethiopian population
- Need for external validation

El-Dahshan et al EA (2023)48 Unclear Low Low Low
- Public PPG datasets
- Probable overfitting due to extreme accuracy

Esmaelpoor et al (2020)49 Low Low Low Low
- Use of fundus images only
- Need for prospective clinical validation

Chen et al (2022)50 Low Low Low Low
- Small dataset (200)
- Uncertainty in generalizability

Evdochim et al (2022)51 Low Low Low Low
- Use of MIMIC-II only
- Lack of deployment validation in clinical systems

Soh et al (2020)52 Low Low Unclear Low
- Small, heterogeneous PPG dataset
- Limited generalizability

Rajput et al (2019)53 Low Low Low Low
- Inclusion of only two datasets
- Lack of external validation

Rajput et al (2022)54 Low Low Low Low
- Small dataset
- Inclusion of ICU patients
- Need for external validation

Huang et al (2021)55 Unclear Low Low Low
- BCG signals
- Lack of previous data (the first study)
- Need for external validation

Miao et al (2020)56 Low Low Low Low
- Use of MIMIC-II only
- Need for prospective validation

Kublanov et al (2017)57 Low Low Low Low
- Inclusion of ICU/arrhythmia population
- Less ACC of SBP estimation

Kandil et al (2019)58 Low Low Low Low
- Small sample (70)
- Use of HRV only
- Need for external validation

Gudigar et al (2019)59 Low Low Low Low
- Use of fundus images
- Moderate performance
- Limited generalizability

Raghavendra et al U (2022)60 Low Low Low Low
- Small sample (66)
- Expensiveness of MRA imaging
- Need for external validation

Zhang et al (2020)61 Low Low Low Low
- Use of echocardiography only
- Unclear sample size
- Need for external validation

Abbas and Ibrahim (2020)62 Unclear Low Low Low
- Use of ultrasound images
- Unclear sample size
- Need for diverse validation

Note. SBP: Systolic blood pressure; PCG: Phonocardiogram; PPG: Photoplethysmography; ECG: Electrocardiogram; COVID-19: Coronavirus disease 2019; 
QUADAS-2: Quality Assessment of Diagnostic Accuracy Studies (version 2); PAH-CHD: Pulmonary arterial hypertension associated with congenital heart disease; 
CVD: Cardiovascular disease; MIMIC: Multiparameter intelligent monitoring in intensive care; ICU: Intensive care unit; HRV: Heart rate variability; MRA: 
Magnetic resonance angiogram.

Table 2. Continued.
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several studies.27,30,34 However, the benefits of fusion were 
not consistent across all investigations. For example, 
Martinez-Ríos et al reported that the accuracy of BP 
detection using PPG was only 71%, and the QUADAS-2 
evaluation rated the study as “uncertain” in terms of 
patient selection and flow/timing, as the sampling method 
was not adequately described.34 This indicates that poor 
design can reduce the benefits of multimodal approaches. 
Likewise, Priya et al and Quachtran et al obtained relatively 
high accuracies of over 80% and 90%, respectively, but 
both were conducted on very small samples (72 and 60 
subjects). This issue reduced the external validity of their 
results, even though they were somewhat biased in other 
parts of QUADAS-.15,16

Applications Across Hypertension Subtypes
The reviewed studies covered a wide range of HTN subtypes, 
demonstrating AI adaptability. The diagnosis of PH was 
a major focus, and AI models used imaging data (e.g., 
echocardiography, cardiac magnetic resonance imaging, 
chest X-ray, and electrocardiogram) to noninvasively 
classify PH subtypes and predict pulmonary artery systolic 
pressure.15,19,21,23,28,35 A number of these imaging-based 
models have shown extremely high diagnostic accuracy, 
with AUC values above 0.90.19,21,28 suggesting that these 
models have the potential to reduce the reliance on invasive 
procedures (e.g., right heart catheterization), thereby 
improving patient safety and comfort.19,21,28 Nonetheless, 
some studies lacked external validation,19,23 highlighting 
that despite high accuracy, reproducibility across diverse 
populations remains unproven.

For secondary hypertension, DL models incorporating 
natural language processing on EHRs demonstrated 
accurate differential diagnosis by integrating textual 
clinical notes with numerical data, in some cases even 
outperforming clinicians in retrospective analysis.17,38 
These findings underscore the potential of AI in 
managing complex clinical scenarios, where multifaceted 
data sources must be synthesized. However, quality 
assessment using QUADAS-2 highlighted unclear bias 
in patient selection and flow/timing due to incomplete or 
heterogeneous datasets,17 underlining a major challenge 
of applying AI in real-world clinical data, where missing 
or inconsistent entries can compromise reliability.

Furthermore, studies using data from wearable 
technologies and simplified ECG signals have shown that 
AI can enable early detection and continuous monitoring, 
providing non-invasive, real-time assessment of high BP 
risk, even outside of traditional clinical settings.24,31,33 
Some studies were prospective,33 which gave them higher 
methodological power. However, others were retrospective 
and limited to single-institution cohorts,31 which made 
their results less generalizable. Based on QUADAS-2 
assessments, quite a few studies had an uncertain risk 
for external validation. Thus, even though the results 
align with current trends in personalized medicine, 
where treatments are customized using algorithms based 

on patient traits, these methods still need more testing. 
They should be tested with larger groups of people and in 
different locations.

Limitations and Challenges
Although these results are promising, there are some very 
significant limitations that hinder their application in 
common clinical practice. By the QUADAS-2 assessment, 
around 76% of the studies contained a low risk of bias in 
the index test, reference standard, and patient selection. 
Nonetheless, 28% were deemed suboptimal due to 
inadequate reporting, unclear timing, or lack of repeated 
measurement, and 16% had miscellaneous problems 
(e.g., very small sample sizes, lack of external validation, 
or missing patient information), indicating that despite 
good diagnostic performance, evidence is still limited due 
to methodological shortcomings.

A common problem was the small size of the dataset,15,16,58 
causing the models to “overfit” too much to existing data 
and not easily perform well on new data. Similarly, the 
lack of external validation was a major problem,19,29,31,34 
limiting our confidence in the performance of the models 
across populations and healthcare systems. It should be 
noted that data heterogeneity, especially when EHRs are 
incomplete or inconsistent, reduces confidence in the 
model results and affects their reliability.17,31 Furthermore, 
the risk of selection bias was high when research was 
conducted on data from only one institution.29,32,46 
A critical barrier was the interpretability of DL 
models, where “black-box” decision-making hinders 
clinician trust and regulatory approval.27,34,48 Beyond 
methodological concerns, successful integration of AI 
into clinical workflows will also require addressing ethical 
and practical issues (e.g., data privacy, bias mitigation, 
and cost-effectiveness).

Future Implications
To improve the generalizability and reproducibility of 
AI models in HTN diagnosis, future research should 
prioritize prospective, multi-center validation studies with 
large and diverse populations. Moreover, standardized 
and transparent reporting of patient selection, study 
flow, and timing is essential for reducing the “unclear” 
bias observed in nearly one-third of the included studies. 
Furthermore, it is better to increase the transparency of 
models using explainable AI methods (e.g., GradCAM + + ) 
and other interpretable tools in order to gain clinician 
trust, facilitate regulatory approvals, and simplify their 
integration into clinical systems.27,48

In addition, expanding data sources beyond 
conventional medical images and physiological 
signals (e.g., the use of multiomics, wearable data, and 
longitudinal monitoring) can help us more accurately 
categorize risks, diagnose diseases earlier, and optimize 
personalized treatments.24,27,30,33,34 For example, when 
multimodal signals (e.g., PPG, ECG, PCG, and medical 
images) are combined, diagnostic accuracy can be greatly 
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improved. However, the actual impact of this combination 
largely depends on the methodological rigor and quality 
of the input data.27,30,34 Similarly, studies on wearable 
ECGs demonstrate that this technology can enable non-
invasive, real-time monitoring, but external validation in 
larger populations is still needed.24,33,34

Ultimately, a collaborative effort from clinicians, 
programmers, and regulators is required for AI to be truly 
useful and safe in diagnosing high BP. When there is a 
collaboration among the experts, it is possible to set quality 
standards, reduce the risk of data bias from a particular 
center, and ensure that the technology is used ethically, 
safely, and fairly. Accordingly, the existing models can 
become powerful clinical tools that can actually prevent 
complications and deaths from high BP worldwide.

Conclusion
The findings of this article demonstrated how AI could 
revolutionize the way we diagnose and manage high BP, 
adding incredible precision to various treatment options. 
Of course, several challenges remain, including properly 
validating the data, accurately understanding the results, 
and understanding how to integrate this technology into 
healthcare systems. However, the increasing advances 
make the future look promising. Indeed, treatments 
become more personalized and tailored where early 
detection is easier, ultimately reducing high BP and its 
complications around the world.
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