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Abstract \
High blood pressure (BP) is a major health concern that can lead to various cardiovascular diseases, serious complications,
and even death. Although much progress has been made in the diagnosis and treatment of high BP, awareness of this medical
condition and its effective control are not fully achieved. Nonetheless, artificial intelligence (Al) has created new opportunities
for better detection and management of high BP. Therefore, this review investigated Al-related studies (2015-2025) performed for
BP diagnosis. Overall, 48 studies using various Al methods (e.g., machine learning and deep learning) and covering different Al
applications (i.e., non-invasive BP monitoring, early detection and classification of different types of high BP, and even disease
risk prediction) were reviewed. Most Al models had very good accuracy (71-97%), and some even outperformed human experts.
However, there were still problems, such as small sample sizes, lack of external validation, high data variability, and difficulties in
understanding and interpreting complex models. Our findings revealed that Al can diagnose high BP more accurately, help people
receive treatment more quickly, and even personalize their care. Nevertheless, some issues should be figured out before using Al.
Researchers need to understand how these Al models act in actual hospitals and clinics, how they make their decisions, and how
easily they can be integrated into the systems that doctors and nurses currently use. Otherwise, it is difficult for individuals to really

trust this technology.
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Background

High blood pressure (BP) is considered one of the main
health concerns that affects an estimated 1.28 billion
people worldwide. In fact, it is recognized as a major risk
factor for cardiovascular diseases, serious complications,
and even preventable mortality.'?

Considerable progress has been made in the diagnosis
and management of high BP, although much work remains
to be performed in terms of the awareness, treatment,
and control of this disease. Interestingly, only about 14%
of patients can manage to keep their systolic BP below
140 mmHg worldwide.>* High BP is extremely difficult
to control due to the complexity of the disease itself.
Different factors (e.g., genes, the role of environment in
gene alteration, residence, financial resources, and daily
activities) contribute to high BP.>”

In recent years, artificial intelligence (AI) has entered
the medical world as a transformative technology, opening
up new horizons for specialists. More precisely, doctors
can now view and address complex clinical challenges
(e.g., managing high BP) in innovative ways.>’ AI, which

includes machine learning (ML) and deep learning
(DL), has shown promise in pattern recognition, risk
assessment, and outcome prediction. This is particularly
promising when applied to large amounts of health data,
such as information from wearable devices, electronic
health records (EHRs), or omics data.’!!

In addition, AI is extensively applied in the field
of hypertension (HTN), including
measurement, early diagnosis of various types of the
disease, risk prediction, and individualized treatment
design. In fact, this technology is laying the foundation
for precision and personalized medicine more firmly than
ever before ®'?

Moreover, the combination of AI with mobile
technologies, wearables, and telemedicine enables
continuous and remote monitoring and control of BP.
This is especially valuable for chronic diseases (e.g., high
BP) and can be of great help to patients and doctors.***

Despite all these advances, Al tools have yet to enter
clinical practice in various places and remain largely in
the experimental stage. However, there are challenges
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in this regard. For example, it is difficult to precisely
understand the algorithms. In addition, the models
should be tested in real-world conditions, and it should be
ensured that their results apply to different populations.®
Eventually, researchers have been diving into how AI
can help diagnose and manage HTN. Gudigar et al
found that most studies stuck to just one type of data.
Although methods such as electrocardiograms (ECG),
photoplethysmography (PPG), or medical images kept
coming up, there was not much beyond that. Only a few
studies could combine multidimensional data, including
bringing together clinical information, signals, and
imaging to achieve a more complete view."

Despite the scientific value of this review, there are
important aspects that justify the present study. First,
the present study exclusively focuses on the diagnosis of
HTN. Gudigar et al investigated the secondary effects of
HTN (e.g., kidney and heart issues). However, our study
concentrates on Al-based methods for actually diagnosing
HTN. Nonetheless, there is a large research gap here. The
mentioned researchers have indicated that people have
not really dug into using multimodal and explainable
Al for diagnosing high BP. This systematic review seeks
to shine a light on that gap and offer some ideas to help
shape the direction of future research.

Further studies are required to obtain data about Al and
high BP diagnosis. Accordingly, this study aims to review
articles published between 2015 and 2025, focusing on
studies that evaluated patients with high BP and how Al
could help diagnose this medical condition.

Methods

Search Strategy

This systematic review was conducted according to the
guidelines of the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses. Several databases, including
PubMed, Scopus, and Web of Science, were searched
for studies published between January 2010 and August
2025. To this end, specific keywords were used, such as
“Artificial intelligence” OR “machine learning” OR “deep
learning” AND “hypertension” OR “high blood pressure”
AND “diagnosis” OR “detection” OR “screening”.

Inclusion and Exclusion Criteria

Inclusion Criteria

o Studies that used AI methods, such as ML, DL, or
neural networks (NNs), to manage high BP

o Articles published in English

o  Original peer-reviewed research articles, including
clinical trials, observational studies, and retrospective
analyses

o Studies that primarily focused on the use of Al for
HTN diagnosis

Exclusion Criteria
o Non-English publications
o  Reviewarticles, editorials, commentaries, conferences,

and letters to the editor
o Studies not specifically focusing on HTN
o Alapplications in unrelated medical conditions

Data Extraction

Two independent reviewers reviewed the titles and
abstracts. Then, full texts of potentially eligible articles
were assessed for inclusion. Disagreements were resolved
by a third reviewer. Different data were extracted for each
study, including (1) authors and year of publication, (2)
study type and population, (3) Al technique(s) used, (4)
purpose of Al application (e.g., diagnosis or monitoring),
(5) key outcomes and performance measures (e.g.,
accuracy, sensitivity, and specificity), and (6) limitations
and challenges.

Quality Assessment

The methodological quality and risk of bias of the included
studies were assessed using the QUADAS-2 tool (Quality
Assessment of Diagnostic Accuracy Studies-2). This
instrument evaluates four key domains: patient selection,
index test, reference standard, and flow and timing.
The findings of the quality assessment are qualitatively
reported in the Discussion section.

Data Analysis

The data were qualitatively synthesized, and where
possible, a comparative analysis was performed based on
Al techniques and application domains.

Results

Study Selection

A total of 1,628 records were identified through database
searches. After discarding duplicates (n=485), records
that were removed by automation tools (n=36), and other
irrelevant records (n=289), 818 articles remained, which
were screened based on their titles and abstracts. Of this
number, 477 were excluded since they did not match the
inclusion criteria. The full text of 341 articles was reviewed,
and 118 of them were excluded due to irrelevance.
Another 175 articles were also removed because they did
not include the intended data. Eventually, 48 studies were
included in this systematic review (Figure 1).

Overview of Included Studies
Table 1 summarizes the findings of previous studies
conducted on the use of Al in hypertension diagnosis.
The selected studies spanned various Al approaches
applied to the diagnosis of HTN and related conditions,
including essential hypertension, pulmonary hypertension
(PH), intracranial HTN, and secondary HTN. In addition,
the study types included a combination of retrospective
and observational designs, along with secondary analyses
of clinical trials, cross-sectional studies, and development
or evaluation studies. Moreover, the studies examined
different numbers of people, from small groups of less than
100 to large sets of real-world data with over 20,000 people.
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Figure 1. PRISMA Flow Diagram of Study Selection Process. Note. PRISMA: Preferred Reporting Framework for Systematic Reviews and Meta-Analyses

For Non-Invasive Hypertension Diagnosis

Overall, 12 studies were found, focusing on non-
invasive ways to diagnose HTN (e.g., ECG, PPG, or
wearables).?731-3439.414648495256 - Nost  of them reported
pretty impressive accuracy, anywhere from 71% up to
99%. Nonetheless, a closer look revealed that four of
these studies had some issues. Either their sample sizes
were tiny, or they did not explain their design and timing
clearly, making it harder to trust that their results would
hold up in the real world.

Pulmonary hypertension: Fifteen studies addressed
PH  detection using echocardiography,  chest
X-rays, cardiac magnetic resonance imaging, or
phonocardiograms.'>!%21232630.343359 Qyerall, these studies
showed very good diagnostic performance (with an
area under the curve [AUC] of up to 0.97), and most of
them were at low risk of bias as assessed by QUADAS-2.
However, 3 studies had limitations in patient selection or
lacked external validation, leading to an “unclear” risk in
certain domains.

Secondary hypertension: Six of these studies used
Al to differentiate between different types of high BP
(e.g., to identify secondary HTN or subtypes such as
primary aldosteronism and kidney problems).!723842435
Most of them were retrospective in nature. Although
methodological quality was generally acceptable, 2 studies

demonstrated concerns regarding incomplete data and
generalizability.

Intracranial hypertension: Two studies investigated
intracranial HTN using waveform analysis and PPG-based
models.'*®® Both studies reported promising diagnostic
accuracy (>90%), but their small sample sizes limited the
certainty of evidence. The QUADAS-2 assessment rated
them as low risk in the index test and reference standard
but unclear in selecting patients.

Population-level screening and risk prediction: Fifteen
studies examined the prediction of HTN risk from
large survey or population-based data.203637404144-475153-
761 They represented moderate-to-high diagnostic
accuracy, although many of them were considered to have
limitations in either patient selection or flow/timing due
to reliance on self-reported or single-institution data.

Artificial Intelligence Techniques and Applications

The investigated studies used different AI setups. RFs,
support vector machines (SVMs), DTs, and gradient
boosting (old-school ML) were utilized in at least 18
Studies.l5,19,20,25,29,31,33736,39742,44—46 Moreover’ DL methOdS
(e.g., convolutional neural networks, residual network,
and InceptionV3) and semi-supervised models were
employed ln 20 Studies.16718,2l,23,26—28,30,32,35,48756,58,59,61
Additionally, 12 studies included clinical information,
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Table 1. Summary of Studies on the Application of Al in Hypertension Diagnosis

The best model (multilayer
perceptron) achieved an AUC of
0.862 (78% ACC) in the primary
analysis and an AUC of 0.918
(80% ACC) in the subgroup

with preserved left ventricular

The DL model achieved
approximately 92% ACC in
detecting intracranial HTN.

The model accurately identified
common types of secondary
HTN by combining text and
numerical data from patient
records. It outperformed

doctors and standard methods.
However, it needs further testing
in real clinical settings.

The results showed that DL

can accurately detect HTN

from throat images, thereby
performing better than
traditional methods and working
well across all age and gender

The results demonstrated that
this method can accurately
distinguish between types of PH
without the need for invasive
procedures, such as cardiac
catheterization. However,
further studies are needed to
validate its effectiveness across
different patient populations.

RF revealed balanced sensitivity
(SE: 0.818) and specificity (SP:
0.629), better SP than current
medical protocols but lower SE;
no single best algorithm was

The best model (Inception

V3) achieved high ACC in
classification (AUC: 0.970
internal, 0.967 external) and
good PASP prediction (MAE:
7.45 internal, 9.95 external); DL
outperformed expert radiologist
manual classification.

transforming clinical practice by
enabling accurate, noninvasive
diagnosis and monitoring,
potentially reducing the need for
invasive, costly procedures.

The DL model probability of
PH was significantly higher in

Adding DL-predicted PH
probability improved the
predictive ACC for EIPH (AUC

Study Type and Al technique(s) Used Purpose of the Al -
Authors/Year Population in Studies Application Key Findings
Radiomics with
texture feature
extraction from
A retrospective study of  cardiac magnetic Non-invasive
Priva ot al 72 patients, including resonance imaging diagnosis of PH
(20y21)” 42 with pulmonary (MRI) combined thr§u h cardiac MRI
hypertension (PH) and 30  with various texturi analvsis
healthy controls machine learning Y
(ML) classifiers function.
(including multilayer
perceptron)
A retrospective study on Deep learning (DL) cl?fliar%tr:;)zlrz/:ie;lecuon
Quachtran 60 patients monitored for P 5 -
(2016)"® intracranial pressure over applied to waveform  HTN by predicting
30-minute intervals morphology analysis  elevated intracranial
pressure
A two-stage Provision of
A cross-sectional DL frame\%vork supportfor differential
study using real-world withnatural laneuage diagnosisofsecondary
Wu et al electronic health rocessin ]abeg[ 8¢ HIN by integrating
(2013)"7 record (EHR) data Fe)mbedding, textual (e.g.,
from11,961 hypertensive & symptoms) and
. andattention .
patients(2013-2019) mechanisms numerical (e.g., lab
results) data
A secondary analysis of
Yoshihara a clinical trial involving DL with multi- Diagnosisof HTN
otal 7,710 patients with instance frorrgl harvneeal
(20241 influenza-like symptoms  convolutional neural ima e}?s yne
from 64 primary care networks (CNNs) 8
clinics in Japan
groups.
An observational study Nine ML models Classification of PH
on 275 patients with PH . . . as pre-capillary or
Zhu et al ho und t both including LogitBoost t-capill .
(2020)1° who underwent bo and decicion tree post-capillary using
echocardiography and OT) echocardiographic
right heart catheterization data
An observational study Five ML algorithms
Montagna analyzing questionnaire  were tested, Improvement of
ata from 20, including random risk detection
e 8 data from 20,206 including rand HTN risk detecti
(2022)0 individuals collected forest (RF) with and prediction in
during World HTN Day  different data population screening
(2015-2019) balancing techniques found.
Detection of PH
A retrospective study on DL (ResNet50, from Che,St X—rays
Zou et al : . and prediction of
(2020 762 patients (405 PH and  Xception, and ulmonary arter
357 controls) Inception V3) puimonary Y
systolic pressure
(PASP)
Various Al techniques (,;(am:lr;\;?:l:sd Al shows promise in
A review study including  (not specified riskgmonitorin of P
no specific population, individually) ortal HTN angd
Li (2021)* as it summarized existing applied in imaging pastroeso hageal
research on portal HTN  and data analysis %arices a?mir% o
diagnosis for noninvasive  IMINg
diagnosis personalize patient
care
An observational study patients with EIPH.
Wlth. 142 patients A DL model applied  Detection of
Kusunose having scleroderma or L
. R to chest X-ray exercise-induced PH
etal mixed connective tissue . . . )
(2022) disease who underwent images to predict PH  (EIPH) non-invasively

6-minute walk stress
echocardiography

probability

using chest X-rays

increased from 0.65 to 0.74).
Gender, resting mean
pulmonary artery pressure,

and DL model output were
independent predictors of EIPH.

Limitations and Challenges

- Small sample size

- Variability in model
performance depending on
classifier and feature selection
methods

- Small sample size
- Need for further validation on
larger and diverse populations

- Lack of real-world EHR data or
incomplete entries

- Lack of testing generalizability
to other hospitals or healthcare
systems

- Need for further validation
inprospective clinical settings

- Reliance on data from patients
with influenza-like symptoms

- Lack of general population

- Need for further validation in
broader clinical settings and
among diverse populations

- Lack of external validation

- Limited to a specific patient
population

- Need for further comparison
with other noninvasive
diagnostic methods

- Trade-off between SE and SP
- Need for more accurate data
and additional features to
improve model performance

- Difficulty in population-level
detection

- Need for prospective validation
- A slight drop in external test
ACC

- Challenges related to
integrating Al in clinical
workflows

- Need for using large datasets
and validation and ensuring
personalized, timely care

- Lack of transparency

- Implied challenges, including
limited sample size

- Need for further validation in
broader clinical settings
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Table 1. Continued.

Al models can detect subtle
risk patterns for HTN and
optimize treatments based
on individual responses, and
wearables enable continuous
health monitoring for timely

The study found several miRNAs
that were lower in people with
high BP. Using these miRNAs
along with clinical risk factors
(e.g., gender and smoking),

the ML model (SVM) could
accurately identify patients

with essential HTN. The model
displayed high ACC (90%) and
balanced SE and SP, implying
that it was beneficial at both
detecting HTN and ruling it out.
However, it still needs to be
tested on more patients before it

The Al accurately detected CHD
and reasonably identified PAH.

With Al assistance, radiologists
improved their diagnostic ACC.

The model could detect PH with

It performed better at specific

The DL model detected PAH
with 97.6% ACC and predicted
patient risk and expert doctors.
It also improved diagnosis and
prognosis using standard heart

The ML model accurately
predicted PA and its surgically
treatable form with high ACC. It
could identify about one-third
of patients as low risk, allowing
them to safely skip further

A DL model could accurately
detect PH using only ECG data.

The ML model effectively
detected HTN using ECG and
basic body measurements. It
could help identify many people
with undiagnosed high BP,
reducing cardiovascular risk.

Using ML to check employee
health over time was a useful

Authors/Year Study T?'pe and {\I tech.mque(s) Used Purpf)se 'of the Al Key Findings
Population in Studies Application
ML algorithms
A review article anaIYZ|ng' E:'.arly an.d accurate
; physiological, diagnosis of HTN,
analyzing the role of Al . .
lifestyle, and personalized
Juyal et al and wearable technology enetic data: treatment plannin
(2024 in HTN management; no  5C ¢ 44/ pranning,
specific population was adaptive algorithms ~ and real-time
sfudied for personalized blood pressure (BP)
’ treatment monitoring intervention.
optimization
An observational case- D|agn051§ of ess?ntlal
. . HTN by integrating
. control study including . ; .
Jusic et al . > ML — support vector  circulating micro
- 174 participants (89 with : . Co
(2023)* . machine (SVM) ribonucleic acids
essential HTN and 85 )
(miRNAs) and
controls) - .
clinical risk factors
can be used in clinics.
. . Automatic diagnosis
A retrospective study ResNet18 (pretrained
. . of CHD and PAH
using 3,255 preoperative  on ImageNet) . .
chest radiographs compared with associated with
Han et al . . § CHD (PAH-CHD) It performed better than
including 1,174 cases other models X .
(2023)% . . from chest X-rays; radiologists.
with congenital heart (DenseNet121, evaluation if Al can
disease (CHD) and 2,081  MobileNetv2, and improve radiologists’
cases without CHD MobileViT) P 5
ACC
A development and .
] . Screening and
evaluation study using Deep CNNs .
~6000 labeled and trained in a semi- early detection of
Guo et al ) PH by identifying 71% SE and 73% SP
. ~169,000 unlabeled supervised manner;
(2024) ) elevated PASP (=40
phonocardiogram (PCG) ~ GradCAM**for L .
. . s mmHg) using digital  chest locations.
recordings; test set interpretability stethoscope data
included 196 patients P
An observational study,
including DL CNNs using Detection of PAH
Diller et al 450 pulmonary arterial echocardiographic accurately
(2022) HTN (PAH) patients, 308  images and estimated Prediction of patient
with right ventricular right ventricular prognosis (mortality
dilation without PAH, 67  systolic pressure risk)
ultrasound.
healthy controls
Accurate prediction
of primary
Buffolo etal A retrospective study on ML algorithms aldosteronism (PA)
(2021)» 4,059 patients with HTN 8 and its surgically
treatable form
(unilateral PA) .
screening.
A retrospective study
of 24,470 adults who
Aras et al had electrocardiogram Detection of PH and
(2022) (ECG) and either right Deep CNNs its subtypes using 12-
heart catheterization or lead ECG data
echocardiogram within
90 days
An observational study
with 1,091 individuals Opportunistic
Angelaki et al without cardiovascular I?ii REI,i\::_c;;(ﬁedl detection of HTN
(2022)*1 disease (CVD), classified s . using ECG and
; ECG-derived features " .
as hypertensive or clinical data
normotensive
A retrospective analysis Evaluation of
1,72 ff hei f
Adeleke et al :t B’sznsﬁnivm;gfers K-means clustering f,vf,rEn]F;acC; E'Tl
(2024)* v for analyzing BP data P

Nigeria, between 2018
and 2022

screening program
using ML

and practical way to find and
manage high BP at work.

Limitations and Challenges

- Lack of specifying detailed
limitations

- Implied challenges, including
data diversity, integration of
multi-source data, and clinical
validation of Al models

- Need for further validation on
independent patient cohorts
before clinical use

- Less ACC of PAH-CHD
diagnosis compared to CHD

- Use of a retrospective design
- Need for further validation in
clinical settings

- Moderate diagnostic
performance (AUC<0.8)
Dependent on the quality of
PCG recordings

- Need for further validation in
diverse populations

- Lack of transparency in the
article

- Need for validation in broader
and more diverse populations

- Lack of transparency in the
article

- Need for further validation in
diverse populations

- Need for 12-lead ECG data
- Need for further validation in
diverse clinical settings

- Inclusion of a limited
population (patients without
CVD)

- Need for further validation

- Limitation of data (from a
single institution)

- Unavailability of data for 2020
due to the COVID-19 lockdown
- Lack of assessing cost-
effectiveness and practical
challenges of implementation

Digital Health Trends Journal. 2025;1(1)
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Table 1. Continued.

The findings revealed that even
simple ECG signals (e.g., those
from a smartwatch) could help
identify hidden HTN, supporting
early detection and awareness.

Using WST-extracted PPG
features with SVM achieved
71.42% ACC and 76% F1-score
for classifying normotension vs.
pre-HTN; combining PPG and
clinical data via fusion did not
improve performance.

The model accurately identified
most patients with PH, correctly
detecting 88% of true cases, but
was less effective at ruling out
those without the condition.

(BMI+WC+WHR) SE 80.86%,
SP 81.22% in training; dropped
to 45.65% and 65.15% in

Study Type and Al technique(s) Used  Purpose of the Al -
Authors/Year Population in Studies Application Key Findings
An observational
prospective study with Detection of arterial
Angelaki et al 1,254 subjects (average The R ML model on HTN using single-
age ~60 years), both . lead ECGs as a
(2025)* . single-lead ECG data
hypertensive and proof of concept for
normotensive, with no wearable devices
CVD
Wavelet scattering
. transform (WST) for
A study analyzing .
hotoplethysmography feature extraction Early detection of
Martinez- P . L from PPG signals .
. (PPG) signals and clinical . ) HTN using non-
Rios et al . combined with SYM . . .
data for HTN detection o invasive PPG signals
(2022)* . ) classifiers; Early and L
(population details not : and clinical data
specified) late fusion methods
p for combining data
types
Prediction
A retrospective analysis of PH using
Anand etal  of 7,853 patients with Gradient boosting ML  echocardiographic
(2024)» heart catheterization and  model data without
echocardiography data relying on tricuspid
regurgitation velocity
Women: Best model
An observational cross- - Prediction of .
sectional study including Classification tree (an increased BP using testing
Golino et al 400 undereraduate ML algorithm in R, anthropometric Men: Best model
(2014)% 8 15 random trees for P

students (56.3% women),
age 16-63, Brazil

each gender)

measures (BMI, WC,
HC, and WHR)

(BMI+WC+HC+WHR) SE
72%, SP 86.25% in training;
dropped to 58.38% and 69.70%
in testing

Classification trees
outperformed LR.

Seffens et al

A multicohort clinical
study using the Minority
Health Genomics and
Translational Research

NNs (for missing-data
imputation) and data
mining classification

Imputation of missing
phenotype data and
classification of HTN

NNs improved dataset
completeness and increased
power for detecting associations
between phenotype variables
and HTN status. Data mining
produced association rules,
highlighting links between
clinical/phenotypic factors and

It achieved 89.7% ACC,
outperforming traditional
statistical models and baseline

It achieved 99.5% ACC with
DT and RF, 96.3% with LDA,

(2015)* Repository Database; - case/control status
. tools (association rule . .
self-reported African ) in a large genomic/
. .. generation) A
American participants phenotypic database
and related cohorts HTN.
Prediction of kidney
A retrospective analysis disease in patients
Ren et al using electronic health Hybrid NN (BiLSTM  with HTN by
(2019)* records of 35,332 HTN +autoencoder) integrating textual
patients and numerical EHR  neural systems.
data
An observational study;
an HTN dataset with 8 Automatic
personal features (gender, C4.5 DT, RF, linear classification of HTN
Nour and age, height, weight, discriminant analysis  types using personal

Polat (2020)*°

SBP, DBP, HR, and
BMI); 4 classes (normal,
pre-HTN, stage-1, and
stage-2 HTN)

(LDA), and linear
SVM

demographic and
physiological
features

and 92.7% with SVM; it
demonstrated the feasibility
of ML in automatic HTN
classification.

A retrospective analysis
of NHANES data

Prediction of
HTN based on
demographic,

It achieved an AUC of 0.77
(95% CI1 0.75-0.79), an SE

Limitations and Challenges

- Need for validation with data
from actual wearable devices
(e.g., smartwatches)

- Need for high-quality PPG
signals

- Lack of detection ACC
enhancement with the fusion of
data types

- Avoidance of DL methods
due to complexity and lack of
interpretability

- Moderate SP and NPV

- Exclusion of some direct heart
pressure measures

- Need for further validation

- Small, non-representative
convenience sample (university
students)

- Imbalanced dataset (few
women with HTN)

- A decline in predictive
performance in the test

set, indicating limited
generalizability

- Cross-sectional design

- Lack of validation in broader
populations

- A focus on data imputation
rather than direct clinical
diagnosis

- Limited external validation

- Lack of generalizability beyond
African American cohorts

- Modest genomic associations
despite improved imputation

- A limited focus on kidney
disease as a complication of
HTN

- Lack of data generalizability
beyond the applied dataset

- Need for external validation in
diverse populations

- Lack of full description of
dataset characteristics (size and
source)

- Possible overfitting given very
high ACC

- Lack of external/clinical
validation

- Limited generalizability beyond
the dataset

- Imbalanced dataset (more non-
hypertensives)

Lopez- (2007-2016); 24,434 An artificial NN lifestyle, and of 40%, an SP of 87%, and - Relatively low sensitivity

Martinez et - (ANN) classification  comorbidity factors L L
participants (69.7% non- a precision of 57.8%. It - Need for external/clinical

al (2020)% . model (gender, race, BMI, . L . .
hypertensive and 30.3% . outperformed the prior statistical ~validation before clinical
hypertensive) age, smoking, model (AUC of 0.73) adoption

P kidney disease, and v
diabetes)
8 | Digital Health Trends Journal. 2025;1(1)
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Table 1. Continued.

XGBoost, GBM, LR, and LDA
achieved 90% ACC, 100%
recall, and 95% F1-score; RF
achieved 89% ACC, and 83%
DT. Age and BMI were the

(AUROC=0.884, SE=0.619,
SP=0.887, ACC=0.819, NPV
=0.872). Top predictors: office
DBP, office SBP, smoking status,
estimated glomerular filtration
rate, and fasting glucose

It achieved ~90% effectiveness
in diagnosing HTN risk from

It achieved ACC>86% and
recall >92%, demonstrating
reliable risk prediction.

performance: AUC of 0.829,
ACC of 89.6%, recall of 0.896,
precision of 0.878, and F1 score

SMOTE-KNN achieved 83.9%
ACC, 85.1% SP, 83.3% SE, and
89.6% AUC with 10-fold cross-

XGBoost achieved the best
performance: ACC of 88.81%,
precision of 89.62%, recall of
97.04%, F1-score of 93.18%,
and AUC of 0.894; SHAP
analysis highlighted age, BMI,
diabetes, salt intake, alcohol,
smoking, and history of HTN as

The model achieved 100%
detection ACC across multiple

Study Type and Al technique(s) Used  Purpose of the Al -
Authors/Year Population in Studies Application Key Findings
A retrospective,
population-level study
using harmonized DT, RF, gradient Prediction of HTN
lslam ot al Demographic and boosting machine, and identification
(2022)" Health Surveys data XGBoost, logistic of key associated
from Bangladesh, Nepal,  regression (LR), and  factors in South
and India (N=818,603;  LDA Asian populations .
82,748 hypertensive strongest predictors.
10.1%)
Two retrospective cohorts Prediction of white RF performed best
in Taiwan (970 patients coatIH':'N an(}vwlhit_e—
Shih et al for model development LR, RF, XGBoost, and coat uncontrolled
(2022)* and internal validation ANNs .
and 464 patients for HTN from outpatient
external validation) visit data
Diagnosis of HTN
using physiological
Orozco Multilayer feed- (aend Ilgisg:f factors
Torresetal A population-based study forward NNs with difk;:ates snft/)king
43 . , , . .
(2022) backpropagation stress, physical physiological data.
inactivity, and the
like)
Prediction of
An observational study; ~ Hybrid ML |nd|V|dugl risk of
; ) . developing HTN
Fang et al population details not combining K-nearest within the next
(2023)* fully specified in the neighbor (KNN) and five vears based on
abstract (Chinese cohort)  LightGBM Y X
demographic and
blood indicators
An observational stud Development and LR achieved the best
Kurniawan vatonal stucy . validation of an HTN
among Indonesian adults DT, RF, gradient . .
etal (population details in boosting, and LR risk prediction model
(2024)% fSIlﬁext) 5 using modifiable risk
factors of 0.877.
A case study at Petra Synthetic minority Er'?ilcri“sinu(s)ifn
Sakka et al University, Jordan, with a  oversampling noninvasive &
dataset of 31,500 patients technique (SMOTE) . R
(2020)% . X inexpensive patient
(12,658 hypertensive and  with KNN, DT, and data from universit alidation (CV)
18,842 non-hypertensive) other ML classifiers unversity. - validat '
health records
LR, ANN, RF, and Prediction of
lslam et al A cross-sectional study,  XGBoost (Boruta patients at risk of
(2023)7 Ethiopia; 612 respondents feature selection developing HTN and
with 27 risk factors and SHAP for identification of key
explainability) risk factors
key predictors.
ExHyptNet
(EfficientNetB3 for Development of
A development and feature extraction, an explzinable Al
El-Dahshan validation study; Grad-CAM for model for automatic

et al (2023)*

evaluation of two public

PPG datasets (PPG-BP
and MIMIC-1I)

explainability,

and XGBoost

and extremely
randomized trees for
classification)

detection and
classification of HTN
using PPG signals

validation methods (holdout,
10-fold CV, and leave-one-out);
it provided interpretable outputs
with Grad-CAM.

Esmaelpoor
etal (2020)*

A development and
evaluation study; PPG

data from 200 subjects

Multistage deep NN
(CNNs for feature
extraction and
LSTM for temporal
dependencies)

Estimation of SBP
and DBP from PPG
signals

It met the AAMI standard

and achieved Grade A (BHS
standard) for both SBP and DBP
estimation; it had consistent and
accurate predictions.

Chen et al
(2022)°

A development and

evaluation study; dataset:
MIMIC-II, 1,562 subjects

(normal, hypertensive,
and hypotensive)

DL: Receptive field
parallel attention
shrinkage network
with the BP range
constraint

Cuff-less and
continuous
estimation of SBP
and DBP from PPG
signals

Achieved MAE of 2.26/2.15
mmHg (SBP) and 1.63/1.59
mmHg (DBP); it outperformed
state-of-the-art methods and was
robust against fluctuations.

Limitations and Challenges

- Reliance of models mainly on
survey/self-reported data

- Lack of the inclusion of
biochemical markers

- Uncertainty in generalizability
outside South Asia

- Need for real-world validation

- Need for conducting the study
on other populations than
Taiwanese cohorts

- Limited external validation to
one cohort

- Need for prospective validation
for generalizability

- Lack of detailed information on
sample size

— Need for external validation

- Need for testing on more
diverse populations and clinical
settings

- Lack of full description of
population and dataset details
- Need for external validation

- Uncertainty in applicability to
non-Chinese populations

- Need for external validation

- Limited generalizability outside
the Indonesian population

- Lack of fully specified dataset
details in the abstract

- Reliance on a single-institution
dataset (Petra University)

- Uncertainty in generalizability
of results to broader populations
- Lack of external validation

- Small sample size (n=612)
- Lack of generalizability of
findings to populations other
than the Ethiopian population
- Need for external validation
in larger, diverse cohorts for
generalizability

- Limited evaluation (only public
datasets rather than prospective
clinical data)

- Extremely high performance,
raising concern for overfitting

- Need for further testing
regarding generalizability to
real-world settings

- Limited dataset evaluation (200
subjects)

- Uncertainty in generalizability
to larger/diverse populations
-Need for validation in real-
world/clinical settings

- Limitation in testing (only on
the MIMIC-II dataset)

- Lack of validation regarding
real-world generalizability
and deployment in clinical
monitoring systems

Digital Health Trends Journal. 2025;1(1)
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Table 1. Continued.

It had an ACC of systolic HTN
detection of ~70%, and a

It achieved 97.7% ACC with

HDI using LOGE +SFD features
effectively discriminated LRHT
vs. HRHT; it had encouraging
performance for ICU use.

classification ACC using 10-

MAE of 3.52 mmHg (SBP)

and 2.13 mmHg (DBP); SD

of 5.10 mmHg (SBP), 3.07
mmHg (DBP); it met the highest
standards of AAMI and BHS;
moreover, it outperformed state-

It achieved an estimation error
of 0.07 £7.77 mmHg (MAP)

and 0.01+6.29 mmHg (DBP);
compliant with AAMI standards;
Grade A (MAP, DBP) and Grade
B (SBP) per BHS standards;
validated on independent
arrhythmia dataset with similarly

Discriminant analysis achieved

selection with non-correlated
sets performed better than PCA-

It achieved 90.9% ACC in
distinguishing hypertensive vs.
normal subjects; it demonstrated
feasibility of predicting HTN

It achieved ~92% classification
ACC; the proposed method

Authors/Year Study T?'pe and {\I tech.nlque(s) Used Purp?se .of the Al Key Findings
Population in Studies Application
HTN detection
. A development study; by analyzing
3?;;;2”;; e 359 PPG recordings from ML models PPG waveform
open-source databases morphology (ANC maximum of 72.9%.
Test™)
A development and chzxcils:?i(;?’e
evaluation study; ECG p Detection of HTN
Soh et al for feature
data from the MIT-BIH - ) and masked HTN
(2020 ) extraction+nonlinear . . 10-fold CV.
normal sinus rhythm and features + k-NN using ECG signals
SHAREE database L
classifier
. Optimal Orthogonal
A develc‘)pment study; Wavelet Filter Automated detection
. 139 subjects (SHAREE , . )
Rajput et al database, Physionet); Bank+Student’s t-test ~ of low-risk vs. high-
(2019)> o 14 ! feature selection risk HTN using ECG
ECG signals segmented . .
into 5-minute epochs — Hypertension signals
diagnosis index (HDI)
Raiput ot al g\tszXE(;rrI]mental Continuous wavelet  Automated detection It achieved 86.14%
(2552)54 balli)sltocar%jio ranh transforms for feature  of HTN from BCG
: graphy extraction+2D CNNs signals fold CV.
(BCG) signals
MLPIstm-BP achieved an
MLP-mixer-based
A retrospective analysis  deep NNs (MLP- Estimation of BP
Huang etal  using PPG and ECG BP, gMLP-BP, and (cuff-less) for HTN
(2021)* signals from the MIMIC-Il MLPIstm-BP); Multi-  monitoring and
dataset filter multi-channel  diagnosis
preprocessing
of-the-art models.
A retrospective analysis Continuous, cuff-
) using the public MIMIC A DL model |e§s BP estimation
Miao et al waveform database combining ResNet using one-channel
(2020)*® (ICU patients) and an and LSTMg ECG signals for
independent dataset of HTN detection and
arrhythmia patients monitoring
low errors.
An observational study;  Linear and quadratic
Kublanov et 70 participants (30 discriminant analysis, Diagnosis of arterial  the highest ACC; feature
al 2017)7 healthy and 40 with stage k-NN, SVM (radial HTN using HRV-
111 HTN); short-term basis function), DT, derived features
HRV signals and Naive Bayes based features.
An observational study; ~ Three-dimensional Early detection
) of HTN through
. 66 subjects (balanced CNNs for .
Kandil et al analysis of
dataset: normal vs. cerebrovascular
(2019)® ) . . cerebrovascular
hypertensive); brain MRA  segmentation +ANN . )
. alterations (diameter
scans classifiers . before onset.
and tortuosity)
Globally weighted Development
. . of a CAD tool
) An observational study local binary pattern
Gudigar et al using echocardiograph (LBP) +entro for automated
(2019)* usIng graphy ropy identification of outperformed other LBP
images features with the . i
- PH from cardiac variants.
SVM classifier .
ultrasound images
Contourlet and
shearlet feature Automated detection It showed high ACC in
Raghavendra A development study; extraction+locality  of early structural

et al (2022)%°

ultrasound images of
patients with HTN

sensitive discriminant
analysis for
dimension reduction
+DT classifier

heart muscle
changes induced by
HTN from ultrasound

discriminating hypertensive
structural changes using only 2
features; it was proposed as a
CAD tool for clinics.

Limitations and Challenges

- Variability in PPG acquisition
standards across databases

- Relatively small and
heterogeneous dataset

- Limited generalizability

- Evaluation limited to two
datasets

- Lack of external clinical
validation

- Probable variability with real-
world ECG acquisition

- Small dataset (139 subjects)

- Limited population (the

HRHT group included patients
with comorbid myocardial
infarction, stroke, and syncope,
probably confounding pure HTN
detection)

- Need for external validation on
larger datasets

- Limited dataset/sample details
in abstract

- Need for external/clinical
validation

- Lack of testing real-world
applicability because of the first
use of 2D-CNN with BCG

- Testing only on the MIMIC-II
dataset

- Lack of validation of
generalizability to diverse real-
world populations and wearable
devices

- Need for prospective clinical
trials

- Focus on ICU/arrhythmia
populations

- Need for real-world wearable
device validation

- Less ACC of SBP estimation
(Grade B)

- Small sample size

- Limitation of the model to HRV
signals

- Need for external validation

in larger and more diverse
populations

- Small sample size

- Reliance on MRA imaging
(costly and not widely available
for screening)

- Need for external validation for
broader clinical utility

- Lack of detailed data in
abstract regarding the dataset
and sample size

- Limitation in the use of method
(echocardiography imaging)

- Need for external validation for
clinical adoption

- Lack of the inclusion of the
sample size in the abstract

- Testing only on a specific
population

- Need for validation in diverse
datasets
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Table 1. Continued.

Key Findings Limitations and Challenges

AUC for HTN of 0.766;
hyperglycemia of 0.880;
dyslipidemia of 0.703; it also
predicted hematocrit and
MCHC with AUC>0.7.

- Moderate performance for
HTN prediction

- Limitation of dataset (only the
rural Chinese population)

- Uncertainty in generalizability

Authors/Year Study T?'pe and {\I tech}nque(s) Used Purpf)se f’f the Al
Population in Studies Application
Prediction of HTN,
A cross-sectional study; hyperglycemia,
Zhangetal 625 subjects, 1,222 high- dyslipidemia, and
(2020)% quality fundus images DL NN models CVD risk factors
(Henan, China) from retinal fundus
images
A development and Dense feature
Abbas and evaluation study; 4,270 transform of hypertensive
Ibrahim retinal fundus images layer +trained feature retinopathy (HR)
(2020)°2 (3 public datasets + 1 layer+deep residual  from retinal fundus

private) learning (CNN) images

Automated detection It achieved an SE of 93%, an SP - Focus on retinal HR

detection rather than direct BP
measurement

- Need for validation in
prospective clinical settings

of 95%, an ACC of 95%, and
an AUC of 0.96 (10-fold CV);
it outperformed state-of-the-art
methods.

Note. SBP: Systolic blood pressure; DBP: Diastolic blood pressure; AUC: Area under the curve; Cl: Confidence interval; COVID-19: Coronavirus disease 2019;
LSTM: Long short-term memory; MCHC: Mean corpuscular hemoglobin concentration; Al: Artificial intelligence; ICU: Intensive care unit; HR: Heart rate; BMI:
Body mass index; WC: Waist circumference; HC: Hip circumference; WHR: Waist-to-hip ratio; HRV: Heart rate variability; ACC: Accuracy; MRA: Magnetic
resonance angiogram; ResNet: Residual network; SHAP: SHapley Additive exPlanations; Grad-CAM: Gradient-weighted class activation mapping; MAE: Mean
absolute error; GBM: Gradient boosting; XGBoost: Extreme gradient boosting; NPV: Negative predictive value; AAMI: Association for the Advancement of

Medical Instrumentation; PCA: Principal component analysis.

images, ECG, phonocardiograms (PCG), or PPG data in
mlxed WayS.17’19’27’29’34’35‘38‘42’44’48’49’56

These models were used to evaluate HTN using
non-invasive methods,??!343464%5236 sort out kinds of
pulmonary HTN,??1343946495256 spot early signs with
images and wearables,'*!>12123263035 and detect through
imaging and wearable technologies earlier.'®***** They
were also utilized to differentiate secondary HTN from
essential HTN!72»23%4243 and guess the risks or predict
how things will proceed.!73364041.44-47

According to QUADAS-2 (Table 2), most studies had
the lowest risk of error in the index and reference standard
test sections. Conversely, some lacked external validation;
thus, their risk was assessed as “uncertain” in the flow and
timing sections.

Diagnostic Performance

Diagnostic performance was generally high across the
included studies. The reported accuracy ranged from 71%
(34) to over 97%.%*>* For example, Zou et al*' achieved
AUC values of 0.97 in pulmonary HTN detection from
chest X-rays, and Jusic et al* reported ~90% accuracy for
essential HTN classification using microRNA-based SVM
models. In several instances, Al performance exceeded
that of human experts; for example, Han et al*® and Diller
et al*® found that Al assistance improved or outperformed
radiologists in image interpretation.

Based on quality assessment, most high-performing
studies were categorized as low risk of bias; however,
those with small datasets (e.g., Priya et al * and Quachtran
et al'®) or retrospective designs were downgraded to
“unclear” in patient selection or flow/timing domains.

Limitations and Challenges
Although the results were
methodological issues remained:
Small sample sizes made the results ungeneralizable
across more than 10 studies.!>!62*365253575863 T addition,
lack of external validation was a common problem,
especially in studies that used imaging data and

promising, several

EHRS.17,19,21,29,31,34,35

Moreover, data heterogeneity and incomplete
information, especially in models built on EHRs, reduced
confidence in the results.”?"*® Additionally, model
interpretability was a barrier for DL models.??*44

The risk of bias and overfitting in data collected from a
single institution was also identified as well.2**>*¢

Overall, the QUADAS-2 evaluation revealed that
most studies were of acceptable methodological quality.
However, future research should focus on large-scale
prospective validation, standardized reporting, and the
use of explainable AI to enhance the clinical application
of these technologies.

Quality Assessment

According to the obtained data (Table 2), the majority of
included studies showed a low risk of bias in the domains
of patient selection, index test, and reference standard.
Specifically, 38 studies (76%) were rated as low risk
across these domains. In contrast, in the domain of flow
and timing, 14 studies (28%) were judged as “unclear”
due to insufficient reporting. Additionally, some
methodological limitations (e.g., small sample size, lack
of external validation, or incomplete patient information)
raised concerns about potential bias in 8 studies (16%).
Even though these problems were present, over two-
thirds of the studies were performed well and provided
trustworthy information, highlighting the validity of the
overall evidence.

Discussion

This review thoroughly delved into how Al is being used
to diagnose and handle high BP, along with its different
types (e.g., primary, pulmonary, intracranial, and
secondary HTN). The studies revealed that AI methods
go from basic ML models (e.g., SVMs and RFs) to more
advanced DL setups (e.g., convolutional neural networks)
and models that mix clinical info with imaging data. The
findings confirmed that AI has real potential to improve
diagnostic accuracy, early detection, risk stratification,
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Table 2. Quality Assessment of Included Studies Using QUADAS-2

Pati Refi Fl e .
Authors/Year atlen't Index Test eterence .OVY and Comments/Justification
Selection Standard  Timing
Priya et al (2021)" Low Low Low Low ) Sma}ll .sam'p[e 72) . i
- Variation in model performance in terms of the classifier
- Small sample
16
Quachtran et al (2016) Low Low Low Low ~ Need for further validation
Wu et al 2013)” Low Low Unclear Unclear - Probable mlssmg/lAncomplete‘ entries due to the use of real-world EHRs
- Need for prospective validation
Yoshihara et al (2024)'® Low Low Low Low - Limited study population (influenza-like illness patients)
Zhu et al (2020)" Low Low Low Low . Lfid.( of externa[‘valldatlon
- Limited population
Montagna et al (2022)*° Low Low Unclear Low - Population sur'v-ey .
- Trade-off sensitivity vs. specificity
Zou et al (2020)* Low Low Low Low - High |nterna[/externa] acFurai\cy
- Need for prospective validation
- A review-type article
Li (2021)* Unclear Unclear Unclear Unclear - Lack of a specific population
- Limited generalizability
- Small sample size (142)
23
Kusunose et al (2022) Low Low Low Low _ Need for broader validation
Juyal et al (2024)* Unclear Low Unclear Unclear . ReVIeW_tyP? study .
- Lack of original patient cohort
Jusic et al (2023)* Low Low Low Low - Limited sa}mple size (174 part}ctpants)
- Need for independent validation
- Retrospective nature
Han et al (2023)%® Low Low Low Low - Less accuracy of PAH-CHD
- Need for further clinical validation
Guo et al (2024)” Low Low Low Low - Moderate‘dlagnostlc performance (AUC<0.8)
- PCG quality dependent
Diller et al (2022)*® Low Low Low Low - Need for validation in more diverse populations
Buffolo et al (2021)* Low Low Low Low - Inclusion of 4,059 p'atle'nts
- Need for further validation
Aras et al (2022)*° Low Low Low Low - Need for 1.2-Iead ECG -
- Need for diverse clinical validation
Angelaki et al (2022)" Low Low Low Low - Limitation in the |nc-Iu5|-on of subjects (patients without CVD)
- Need for further validation
- Single institution
32
Adeleke et al (2024) Low Low Unclear Low - Data gaps (COVID-19)
Angelaki et al (2025)* Low Low Low Low - Prospective Proqf-of-concept
- Need for validation on wearables
Martinez-Rios et al (2022)* Unclear Low Unclear Unclear - Lack of populatlon de'ta|]s ) )
- Lack of improvement in performance by using the fusion method
Anand et al (2024)* Low Low Low Low ) Moder'ate spec'lﬁcny
- Exclusion of direct heart pressure measures
Golino et al (2014)* Low Low Unclear Low ) S.ma.”’ non_repr?sen.tétwe student sample
- Limited generalizability
Seffens et al (2015)* Low Low Unclear Low ) Ff’cf“ on data [mquaUO.n
- Limited external validation
Ren et al (2019)* Low Low Low Low - Focus on kidney d[segse .
- Need for external validation
- Small dataset
Nour and Polat (2020)* Unclear Low Unclear Low - Possible overfitting
- Lack of clinical validation
- Imbalanced dataset
Lopez-Martinez et al F (2020)"° Low Low Unclear Low - Low sensitivity
- Need for external validation
- Population-level survey
41
Islam et al (2022) Low Low Unclear Low - Uncertainty in generalizability outside South Asia
Shih etal (2022) Low Low Low Low - Inclusion of two cohorts in Taiwan
- Limited external validation
- Population-based
Orozco Torres et al (2022)* Low Low Unclear Low - Limited sample details

- Need for diverse testing
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Table 2. Continued.

- Single institution (Petra University)

- Probable overfitting due to extreme accuracy

- Need for prospective clinical validation

- Lack of deployment validation in clinical systems

- Small, heterogeneous PPG dataset

- Lack of previous data (the first study)

- Inclusion of ICU/arrhythmia population

Authors/Year Patlen.t Index Test Reference FI.OVY and Comments/Justification
Selection Standard  Timing
- Chinese cohort
44
Fang et al (2023) Unclear Low Unclear Low _ Need for external validation
Kurniawan et al (2024)% Low Low Unclear Low - Indonesian aults _—
- Need for external validation
Sakka et al (2020)* Low Low Low Low s
- Lack of external validation
- Small sample (n=612)
Islam et al (2023)* Low Low Unclear Low - Ethiopian population
- Need for external validation
El-Dahshan et al EA (2023)* Unclear Low Low Low - Public PPG datasets
Esmaelpoor et al (2020)* Low Low Low Low - Use of fundus images only
Chen et al (2022)% Low Low Low Low -Small dataset 200)
- Uncertainty in generalizability
Evdochim et al (2022)>! Low Low Low Low - Use of MIMIC-1l only
52
Soh et al (2020) Low Low Unclear Low - Limited generalizability
Rajput et al (2019)% Low Low Low Low - Inclusion of only two datasets
- Lack of external validation
- Small dataset
Rajput et al (2022)* Low Low Low Low - Inclusion of ICU patients
- Need for external validation
- BCG signals
Huang et al (2021)* Unclear Low Low Low
- Need for external validation
Miao et al (2020)° Low Low Low Low - Use of MIMICHI or\ly .
- Need for prospective validation
57
Kublanov et al (2017) Low Low Low Low ~ Loss ACC of SBP estimation
- Small sample (70)
Kandil et al (2019)°® Low Low Low Low - Use of HRV only
- Need for external validation
- Use of fundus images
Gudigar et al (2019)* Low Low Low Low - Moderate performance
- Limited generalizability
- Small sample (66)
Raghavendra et al U (2022)®°  Low Low Low Low - Expensiveness of MRA imaging
- Need for external validation
- Use of echocardiography only
Zhang et al (2020)°' Low Low Low Low - Unclear sample size
- Need for external validation
- Use of ultrasound images
Abbas and Ibrahim (2020)% Unclear Low Low Low - Unclear sample size

- Need for diverse validation

Note. SBP: Systolic blood pressure; PCG: Phonocardiogram; PPG: Photoplethysmography; ECG: Electrocardiogram; COVID-19: Coronavirus disease 2019;
QUADAS-2: Quality Assessment of Diagnostic Accuracy Studies (version 2); PAH-CHD: Pulmonary arterial hypertension associated with congenital heart disease;
CVD: Cardiovascular disease; MIMIC: Multiparameter intelligent monitoring in intensive care; ICU: Intensive care unit; HRV: Heart rate variability; MRA:

Magnetic resonance angiogram.

and prognosis prediction in hypertensive disorders.
However, when the quality of studies was assessed using
the QUADAS-2 tool, it was found that the reliability
and generalizability of results largely relied on the
methodology and design of the studies themselves.

Diagnostic Accuracy and Performance

Most Al models demonstrated high diagnostic
performance, with DL models for PH diagnosis from
chest X-rays achieving AUC values up to 0.97,*

occasionally surpassing expert radiologists.?**® Similarly,
SVM-based models using circulating microRNAs reached
90% accuracy in diagnosing essential HTN.” These high-
performing studies were generally rated as low risk of bias
in QUADAS-2, particularly in the domains of index test
and reference standard, strengthening confidence in their
results.

The use of multimodal data fusion, combining
physiological signals (e.g, PPG, PCG, ECG, and
imaging), further enhanced diagnostic potential in
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several studies.”**** However, the benefits of fusion were
not consistent across all investigations. For example,
Martinez-Rios et al reported that the accuracy of BP
detection using PPG was only 71%, and the QUADAS-2
evaluation rated the study as “uncertain” in terms of
patient selection and flow/timing, as the sampling method
was not adequately described.** This indicates that poor
design can reduce the benefits of multimodal approaches.
Likewise, Priya etal and Quachtran et al obtained relatively
high accuracies of over 80% and 90%, respectively, but
both were conducted on very small samples (72 and 60
subjects). This issue reduced the external validity of their
results, even though they were somewhat biased in other
parts of QUADAS-.!>1¢

Applications Across Hypertension Subtypes
Thereviewed studies covered awide range of HTN subtypes,
demonstrating Al adaptability. The diagnosis of PH was
a major focus, and Al models used imaging data (e.g.,
echocardiography, cardiac magnetic resonance imaging,
chest X-ray, and electrocardiogram) to noninvasively
classify PH subtypes and predict pulmonary artery systolic
pressure.!>!92b22835 A pumber of these imaging-based
models have shown extremely high diagnostic accuracy,
with AUC values above 0.90."%" suggesting that these
models have the potential to reduce the reliance on invasive
procedures (e.g., right heart catheterization), thereby
improving patient safety and comfort.'”?"*® Nonetheless,
some studies lacked external validation,”* highlighting
that despite high accuracy, reproducibility across diverse
populations remains unproven.

For secondary hypertension, DL models incorporating
natural language processing on EHRs demonstrated
accurate differential diagnosis by integrating textual
clinical notes with numerical data, in some cases even
outperforming clinicians in retrospective analysis.'”*
These findings underscore the potential of AI in
managing complex clinical scenarios, where multifaceted
data sources must be synthesized. However, quality
assessment using QUADAS-2 highlighted unclear bias
in patient selection and flow/timing due to incomplete or
heterogeneous datasets,” underlining a major challenge
of applying Al in real-world clinical data, where missing
or inconsistent entries can compromise reliability.

Furthermore, studies using data from wearable
technologies and simplified ECG signals have shown that
Al can enable early detection and continuous monitoring,
providing non-invasive, real-time assessment of high BP
risk, even outside of traditional clinical settings.***"*
Some studies were prospective,”® which gave them higher
methodological power. However, others were retrospective
and limited to single-institution cohorts,** which made
their results less generalizable. Based on QUADAS-2
assessments, quite a few studies had an uncertain risk
for external validation. Thus, even though the results
align with current trends in personalized medicine,
where treatments are customized using algorithms based

on patient traits, these methods still need more testing.
They should be tested with larger groups of people and in
different locations.

Limitations and Challenges

Although these results are promising, there are some very
significant limitations that hinder their application in
common clinical practice. By the QUADAS-2 assessment,
around 76% of the studies contained a low risk of bias in
the index test, reference standard, and patient selection.
Nonetheless, 28% were deemed suboptimal due to
inadequate reporting, unclear timing, or lack of repeated
measurement, and 16% had miscellaneous problems
(e.g., very small sample sizes, lack of external validation,
or missing patient information), indicating that despite
good diagnostic performance, evidence is still limited due
to methodological shortcomings.

A common problem was the small size of the dataset,'>'*
causing the models to “overfit” too much to existing data
and not easily perform well on new data. Similarly, the
lack of external validation was a major problem,'??33
limiting our confidence in the performance of the models
across populations and healthcare systems. It should be
noted that data heterogeneity, especially when EHRs are
incomplete or inconsistent, reduces confidence in the
model results and affects their reliability.'”*! Furthermore,
the risk of selection bias was high when research was
conducted on data from only one institution.??**
A critical barrier was the interpretability of DL
models, where “black-box” decision-making hinders
clinician trust and regulatory approval.??*% Beyond
methodological concerns, successful integration of Al
into clinical workflows will also require addressing ethical
and practical issues (e.g., data privacy, bias mitigation,
and cost-effectiveness).

Future Implications

To improve the generalizability and reproducibility of
AJ models in HTN diagnosis, future research should
prioritize prospective, multi-center validation studies with
large and diverse populations. Moreover, standardized
and transparent reporting of patient selection, study
flow, and timing is essential for reducing the “unclear”
bias observed in nearly one-third of the included studies.
Furthermore, it is better to increase the transparency of
models using explainable AI methods (e.g., GradCAM**)
and other interpretable tools in order to gain clinician
trust, facilitate regulatory approvals, and simplify their
integration into clinical systems.?”*

In addition, expanding data sources beyond
conventional medical images and physiological
signals (e.g., the use of multiomics, wearable data, and
longitudinal monitoring) can help us more accurately
categorize risks, diagnose diseases earlier, and optimize
personalized treatments.?*”?**3 For example, when
multimodal signals (e.g., PPG, ECG, PCG, and medical
images) are combined, diagnostic accuracy can be greatly
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improved. However, the actual impact of this combination
largely depends on the methodological rigor and quality
of the input data.?”?** Similarly, studies on wearable
ECGs demonstrate that this technology can enable non-
invasive, real-time monitoring, but external validation in
larger populations is still needed.?**>**

Ultimately, a collaborative effort from clinicians,
programmers, and regulators is required for Al to be truly
useful and safe in diagnosing high BP. When there is a
collaboration among the experts, it is possible to set quality
standards, reduce the risk of data bias from a particular
center, and ensure that the technology is used ethically,
safely, and fairly. Accordingly, the existing models can
become powerful clinical tools that can actually prevent
complications and deaths from high BP worldwide.

Conclusion

The findings of this article demonstrated how AI could
revolutionize the way we diagnose and manage high BP,
adding incredible precision to various treatment options.
Of course, several challenges remain, including properly
validating the data, accurately understanding the results,
and understanding how to integrate this technology into
healthcare systems. However, the increasing advances
make the future look promising. Indeed, treatments
become more personalized and tailored where early
detection is easier, ultimately reducing high BP and its
complications around the world.
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