
Background 
Ischemic stroke is considered the most prevalent type of 
stroke, accounting for 87% of all stroke cases. It occurs 
due to reduced blood supply to brain tissue.1 In addition, 
this condition is a major cause of disability and the second 
leading cause of mortality worldwide.2 In the acute phase 
of stroke, early diagnosis and identification of the location 
and extent of infarction within a short time frame are 
crucial for treatment, particularly for administering 
thrombolytic drugs and performing surgical interventions 
aimed at preserving the affected area and mitigating 
stroke-associated risks.3,4 Standard medical treatment for 
acute ischemic stroke is effective only within 4.5 hours 
after the onset of symptoms.5 Therefore, the success of 
treatment is closely related to the time elapsed between 
the onset of symptoms and successful intervention.6

The brain parenchyma refers to the functional tissue of 
the brain, and ischemic lesions can appear at any point 
within this parenchyma. The morphology and signal 
intensity of these lesions can vary not only between 
stages of the disease but also within them, with this 
variability increasing over time following the onset of 
the stroke.7 While many clinical centers utilize computed 
tomography (CT) as the first imaging modality for stroke 
due to its accessibility and rapidity, magnetic resonance 
imaging (MRI) remains the gold standard for identifying 
and quantifying ischemic lesions.6 This is because MRI 
facilitates the early detection of lesion size and location in 
patients with acute stroke by assessing the functional and 
metabolic parameters of the brain.8-10 Currently, medical 
images are analyzed by radiologists, who often work under 
conditions of fatigue and limited experience, leading 
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Abstract
Background: Ischemic stroke is the most common type of stroke. In the context of ischemic stroke imaging, automated segmentation 
methods facilitate deeper exploration of imaging data by providing consistent measurements and quantitative analyses, thereby 
reducing human errors while enhancing physician efficiency. This study presents a specific type of convolutional neural network 
(NN) to automate the segmentation of ischemic stroke lesions.
Methods: A deep NN called U-Net was developed for the automatic segmentation of ischemic stroke lesions using a U-shaped 
architecture. Then, the He-normal initialization algorithm was employed to address the issues of gradient explosion or vanishing 
gradients.
Results: The U-Net model was evaluated on a separate dataset consisting of samples collected from Tabriz University of Medical 
Sciences, which included 837 images of patients with acute ischemic stroke who sought treatment interventions at the center 
during 2021 and underwent magnetic resonance imaging (MRI). The obtained Dice coefficient (DC) values varied, depending on 
different images and their complexities (0.89–0.98). Notably, most images exhibited an average DC of 0.96, with approximately 
70% of the images achieving a value of 0.96. Moreover, the annotation time for the network was reported to be 7 seconds for 10 
images, while a radiologist took approximately 4 minutes for the same set of images.
Conclusion: Overall, the U-Net algorithm could enhance the speed and quality of service delivery, thereby reducing the time 
for patient care. Consequently, this improvement is likely to result in better patient outcomes and a decrease in stroke-associated 
complications.
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to slower processing times.11 Furthermore, the manual 
identification and diagnosis of lesions are particularly 
challenging due to the similarities and ambiguous borders 
between normal tissue and infarcts.12

In this context, automated segmentation methods are 
urgently needed to provide consistent measurements 
and quantitative analyses.13 Lesions in imaging may 
exhibit diverse morphological characteristics, potentially 
leading to oversight by healthcare providers. The degree 
of differentiation between lesions and normal tissues is 
based on varying intensities, making the identification 
of their boundaries relatively complex.14 The challenge 
of segmenting ischemic stroke lesions began in 2015 to 
establish a fair and direct comparison framework for 
automated methods.15 Consequently, machine learning 
(ML) has emerged as one of the most effective solutions 
for integrating, analyzing, and predicting large and 
heterogeneous datasets .8 With significant advancements, 
deep learning (DL) algorithms have demonstrated the 
capability to produce results comparable to, or sometimes 
surpassing, those of human specialists. DL in the context 
of ischemic stroke imaging can facilitate intelligent 
segmentation, focus detection, image analysis, prediction, 
and treatment of ischemic stroke by exploring deeper 
imaging data, thereby decreasing human errors while 
improving physician efficiency.4

Currently, research on artificial intelligence (AI), 
including DL and diverse imaging techniques, serves as a 
vital tool for studying the brain. More precisely, it assists 
physicians in optimizing time-consuming tasks related to 
the diagnosis and segmentation of brain abnormalities, as 
well as in improving the interpretation of brain images 
and the complex analysis of imaging data. Additionally, 
sophisticated ML algorithms support clinicians in 
identifying effective diagnostic patterns.16 This study 
employs DL algorithms capable of quantifying features 
of brain images, aiding physicians and researchers 
in diagnosing cerebral infarcts and enhancing the 
understanding of brain parenchyma.

The investigation is based on MRI imaging data, which 
is a well-established method for obtaining high-contrast 
brain images. The quantitative analysis of medical images 
or volume measurements necessitates an examination 
of anatomical structures, a process accomplished 
through segmentation, which considerably influences 
the efficiency of medical image analysis. It should be 
noted that even minor inaccuracies in segmentation can 
cause failures in subsequent analysis stages (e.g., feature 
extraction, measurement, and visualization of target 
regions). Moreover, accurate disease diagnosis is crucial 
in medical contexts; therefore, segmentation is a vital step 
in image analysis. Utilizing DL models can lead to time 
saving and improved accuracy 17. Recent DL applications 
in the medical field have shown promising results.18 
Among the well-known DL algorithms, convolutional 
neural networks (CNNs) stand out as the most successful 
for image segmentation, offering high objectivity and 

efficiency compared to other ML algorithms.19 These 
networks are also capable of segmenting infarct lesions in 
MRI images, thereby enabling more accurate predictions 
regarding patient status by integrating lesion volume and 
location.

It is important to note that segmentation is the most 
critical step in identifying and diagnosing lesions. 
Subsequent classification cannot be accurately performed 
without proper segmentation.11 In this study, a specific 
type of CNN is employed to automate the segmentation 
process. This algorithm will assist healthcare providers 
in expediting decision-making and delivering the best 
treatment protocols in the absence of specialist physicians. 
The findings of this research are significant, as they 
provide accessible and precise methods for the automatic 
extraction of data from images for academic, educational, 
and healthcare institutions aiming to enhance clinical care.

Methods
This research is divided into several sections. It should be 
noted that no clinical trial number was applicable in this 
research. 

Data Collection (Dataset)
The first step in ML projects is the process of gathering 
training samples 20, 21. In this study, the source of the 
raw data was MRI images from the PACS system at the 
Imam Reza Educational and Treatment Center of Tabriz 
University of Medical Sciences, prepared in collaboration 
with the Neuroscience Research Center. A total of 837 
DICOM-format MRI images were extracted, which 
belonged to patients who were diagnosed with ischemic 
stroke. To obtain more precise information, all image 
views were examined, and ultimately, the axial view was 
selected for analysis.

Preprocessing
For annotating the MRI images, DICOM files were 
converted from various formats to PNG format. This 
format is capable of preserving details and high-contrast 
graphics, as well as providing extremely precise displays 
without pixel compression. In this study, preprocessing 
was conducted twice. First, additional information (e.g., 
demographic details) was removed from the images, and 
then the brain region was centered in all MRI slices prior 
to annotation. The second preprocessing step involved 
selecting all MRI slices that contained ischemic stroke 
lesions. The number of slices affected by ischemic brain 
injury varied by method, yielding 60 slices for analysis.

To isolate images containing ischemic lesions, specific 
masks created by physicians during the annotation 
process were utilized, and each mask was associated with 
the corresponding two-dimensional (2D) image of the 
stroke lesion. On average, approximately 19 image slices 
were extracted for each sample. In the final preprocessing 
stage, all stroke images and their corresponding masks, 
stored in PNG format, were selected and converted into 
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2D Numpy arrays.

Data Annotation
Data labeling and annotation are fundamental steps in 
ML. It is noteworthy that labeling it is a time-consuming 
process since it heavily relies on manual work and must 
be performed by field specialists. In the present study, 
the data were annotated after file format conversion 
and the first preprocessing stage, with the assistance of 
a radiology expert from Tabriz University of Medical 
Sciences. They annotated the stroke lesions in each slice 
of the MRI images using Sefexa software (version 1.1.2). 
Regardless of the presence or absence of lesions, this 
software generated a mask for each 2D slice, which was 
saved in PNG format. The values of the generated masks 
were either 1 or 0, indicating either the stroke lesion tissue 
(1) or healthy tissue (0).

Setting up the Google Colab Environment
To enhance the accuracy and speed of NN computations 
and improve accessibility and efficiency, the U-Net 
deep NN was designed and implemented on a graphics 
processing unit platform. Google Colab was selected 
as an online host for implementing the network code. 
The capabilities of this platform eliminated the need 
for a dedicated server and provided access to hardware 
with 52 GB of RAM and 16 GB of graphics processing 
unit, thereby facilitating faster model development and 
evaluation while reducing overall processing time.

Connecting Google Colab to Google Drive
Using Python coding, a connection was established 
between Google Colab and Google Drive. The deep NN 
then read all the original images and their corresponding 
masks from Google Drive for processing. At this stage, 
the connection between Google Colab and Google Drive 
was established by mounting the coding environment 
to the virtual drive in Google Drive. After executing the 
mount command to facilitate the connection, a message 
appeared requesting permission to access Google Drive. 
The connection was successfully established following 
confirming and selecting the desired Gmail account. 
To enable this connection while performing deep NN 
computations in the cloud, project data were stored in the 
Google Drive virtual space under the name “my_drive,” 
and the link to Google Colab was established.

Library Imports
After completing the previous steps, all necessary 
libraries and packages were imported and categorized 
into four groups: system and standard libraries, image 
processing libraries, libraries for numerical computations, 
visualization, and file handling, and libraries related to the 
design and implementation of deep NNs.

Design and Training
To configure the image parameters, the size of the images 

was adjusted from 192 × 192 to 128 × 128 pixels. Based on 
the architecture of the U-Net NN, the optimal standard 
for image dimensions for training the NN is 128 × 128 
with a single channel. The selected images were converted 
to a single-channel format. In addition, the access paths 
for the images were designated during the training 
and testing phases within Google Drive. A total of 700 
training images were allocated, indexed from 1 to 700 in 
the specified path, while 137 testing images were indexed 
from 701 to 837.

Modification and Retrieval of Training Images and 
Corresponding Masks
The size of the images was adjusted to 128 × 128 pixels 
to ensure the optimal dimensions for input into the NN 
while preserving the relevant features. Additionally, the 
input images for the network were selected in grayscale 
format as single-channel images, resulting in a 2D matrix 
when dealing with the grayscale images in this project.

Results
The proposed architecture, its characteristics, and 
the results derived from deep learning modeling are 
examined.

The Proposed Network Architecture
Building the U-Net Neural Network Model
A deep NN, known as U-Net, was presented for the 
automatic segmentation of ischemic stroke lesions. 
This NN reduces the number of network parameters 
and mitigates the risk of overfitting. As illustrated in 
Figure 1, the architecture is primarily U-shaped and 
consists of two main components: the encoding path 
and the decoding path. The encoding path is composed 
of two convolutional layers, each utilizing a 3 × 3 kernel. 
Each of these convolutional layers employs a rectified 
linear unit (ReLU) activation function and a 2 × 2 max-
pooling algorithm to reduce feature map sampling.22 
The decoding path, on the other hand, reconstructs the 
image to its original size through convolutional and 
pooling layers, playing a crucial role in facilitating the 
precise localization of objects. The U-Net architecture 
incorporates 23 convolutional layers.

Encoder Path
In the encoding layer during the feature extraction phase, 
the first layer was defined with 16 kernels of size 3 × 3, 
utilizing the ReLU activation function to learn complex 
data and produce acceptable predictions at the output. 
The exponential linear unit activation function was 
also employed to address the issue of neuron death for 
negative values in the ReLU function. In addition, the He-
normal initialization algorithm was applied to mitigate the 
problems of gradient explosion and vanishing gradients. 
In the convolution process, kernels were utilized for 
feature extraction. A kernel size of 3 × 3 was chosen, 
given that larger kernels entail high computational costs. 
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Subsequently, the second layer was constructed with 32 
kernels of size 3 × 3, followed by the third layer with 64 
kernels, the fourth layer with 128 kernels, and the fifth 
layer with 256 kernels.

Decoder Path
After completing the encoding path, the features were 
transformed into a mask representation in the final 
layer using Softmax. This was achieved through pooling 
and convolutional layers that resize the output back to 
its original dimensions, with the features presented as 
masks. To prevent network errors due to the loss of image 
information, concatenation was performed at four stages. 
The input (original images) and output (image masks) 
were read using the model command. The system loss 
was calculated through the Adam optimization function, 
utilizing “binary_crossentropy” as the loss function.

Network Training
During the model training process, due to the high number 
of images, 15% of the data was set aside as validation 
data. The batch size was set to 1. To enhance the model’s 
accuracy, the number of epochs was determined to be 
100. The loss decreased from 0.034 in the first epoch to 
0.0085 by the hundredth epoch, while the validation loss 
(val_loss) changed from 0.028 to 0.0097.

Evaluation
Evaluation and Comparison of the Designed Algorithm 
With Medical Diagnosis
The Dice coefficient (DC) was employed to assess the 
segmentation results of the model. In the context of 
image segmentation, the DC was utilized to evaluate the 
similarity between the predicted mask generated by the 
AI and the corresponding ground truth mask. The DC 
ranges from 0 to 1, indicating no overlap or complete 
overlap and agreement, respectively. The Dice index was 
calculated using the following formula:

2 2
                          

X Y X Y
DCS or DCS

X Y X Y
∩ ∩

= =
∪ +

In this context:
	• ∣X∩Y∣| denotes the number of common elements 

between sets X and Y.
	• ∣X∣ represents the number of elements in set X, and 

∣Y∣ is the number of elements in set Y.
The U-Net model was evaluated on a separate dataset 

comprised of samples collected from Tabriz University 
of Medical Sciences. Figure 2 shows a sample of dataset 
and the segmentation result by the proposed model. This 
dataset included 837 images from patients with acute 
ischemic stroke who visited the aforementioned center 
for therapeutic interventions from the beginning to the 
end of the year 2021 and underwent MRI. The DC was 
utilized for model evaluation, as it is one of the most 
important assessment metrics for segmentation studies. 
This coefficient calculates the similarity between two sets, 
quantifying the overlap space between the segmentation 
map and the true label of each image. In this study, the 
DC values varied based on different images and their 
complexities, ranging from 0.89 to 0.98. Notably, the 
majority of images had an average DC of 0.96, with 
approximately 70% of the images yielding a DC of 0.96. 
The results indicated that the annotation time for the 
network for 10 images was reported to be 7 seconds, 
whereas the same number of images took approximately 
4 minutes for the radiologist to annotate.

Discussion
Importance of Data Collection and Preparation in 
Stroke Diagnosis
Data collection and preparation results revealed that the 
availability and lower cost of CT scans compared to MRI 
lead to many patients exhibiting a number of clinical 
symptoms (e.g., diplopia, dizziness, and weakness) being 
initially subjected to CT imaging. However, due to the 

Figure 1. The Proposed U-Net Architecture for Semantic Image Segmentation. Note. ReLU: Rectified linear unit
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Figure 2. Original Grayscale Brain Scan, Highlighting Anatomical Structures, 
Potential Abnormalities, and the U-Net-Generated Segmentation Mask

superior ability of MRI to display details of soft tissue 
and high-quality images, patients with ischemic stroke 
are referred for MRI, especially for the diagnosis of the 
lesion’s location and extent.

Imaging techniques (e.g., MRI with perfusion-weighting 
and diffusion-weighting) are integral components of the 
diagnostic process in acute ischemic stroke conditions. 
The visual interpretation of these data is the most likely 
method for triaging stroke patients and can facilitate 
timely reperfusion therapy. Time is critical in stroke 
diagnosis; the sooner a diagnosis is made and appropriate 
treatment initiated, the better the outcomes for patients. 
Therefore, the development of automated methods for 
measuring and identifying stroke lesions can significantly 
enhance assessment accuracy.23-25

The Role of Deep Learning in Stroke Diagnosis
Given global statistics, stroke remains a leading cause 
of morbidity and mortality. The accurate identification 
of lesion location and volume, particularly through 
early diagnosis, can improve clinical outcomes, thereby 
reducing disability. However, stroke identification is often 
challenging and heavily relies on the speed and accuracy 
of imaging data interpretation. In this context, DL has 
emerged as an effective tool for analyzing medical images.

DL models (e.g., U-Net and autoencoder) have 
achieved remarkable success in medical imaging. These 
models are specifically designed for the segmentation 
and identification of lesions in images and can expedite 
the diagnostic process. Moreover, DL algorithms, due 
to their ability to extract complex features from data, 
can effectively facilitate the identification and analysis of 
ischemic stroke.

Distinction of This Research From Other Studies
This study differentiates itself from previous research 
in several key aspects. Firstly, while many prior studies 
focused on stroke identification based on clinical features 
and imaging, this study emphasized the application of 
deep NNs for the precise segmentation of stroke lesions. 
Furthermore, this research utilized high-quality MRI 
images rather than CT scan data, providing greater 
accuracy in identifying and analyzing brain lesions.

Additionally, the performance evaluation results 

of the designed algorithm in this study demonstrated 
high segmentation accuracy and a faster response time 
compared to manual methods. While many studies rely 
on considerable time and human resources for image 
analysis, this study confirmed that the designed algorithm 
can segment an image in an average of 7 seconds, whereas 
a radiologist would typically require about 4 minutes for 
the same task.

Performance Evaluation of the Algorithm
In the performance evaluation, the use of the intersection 
over union (IoU) metric as a measure of accuracy clearly 
illustrated the advantages of this approach compared 
to traditional algorithms (Table 1). A minimum IoU 
value of 0.48 was achieved in this study, indicating a 
commendable level of accuracy in lesion segmentation, 
which contradicts the results of numerous previous 
studies that faced significant challenges in achieving high 
accuracy under complex conditions.

The development of DL algorithms in this domain can 
lead to further advancements in stroke diagnosis and 
treatment, enhancing the quality of healthcare services 
in this area. Ultimately, our findings demonstrated that 
the integration of DL techniques for stroke diagnosis 
can alleviate the workload of healthcare providers and 
improve clinical outcomes for patients.

Conclusion
DL techniques have been utilized in diagnostic imaging 
to address many existing challenges in modern healthcare 
environments. These techniques provide tools that assist 
physicians in making more confident decisions when 
faced with growing patient lists while also helping to 
streamline workflows and optimize the deployment 
of personnel and equipment resources. Additionally, 
they contribute to reducing daily stress and pressure on 
healthcare professionals’ well-being.

The outcome of this research was the development of 
a DL algorithm for patients with acute ischemic stroke, 
designed as an AI-based model. Our findings indicated 

Table 1. Performance Comparison of Deep Learning Models for Image 
Segmentation

Reference Model Architecture DSC IoU

Sales B12 U-Net-based CNN 0.84 ± 0.31 -

Nishio M19 U-Net-based CNN 0.6684 -

Clèrigues A16 CNN 0.8503 -

Lundervold AS11 FCN
Training = 0.8652
Validation = 0.74

Testing = 0.63
-

Kim YC8 VoxResNet 0.8491 -

Valverde JM25 CNN 0.73 -

Castillo D17 CNN-Res 0.8543

Our model U-Net-based CNN 0.96 0.48

Note. CNN: Convolutional neural network; FCN: Fully convolutional 
network; VoxResNet: Voxelwise residual neural network; DSC: Dice 
similarity coefficient; IoU: Intersection over union.
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that the developed algorithm could successfully enhance 
the speed and quality of service delivery. The results 
further demonstrated that, due to the efficiency and high 
speed of the proposed algorithm compared to human 
performance, the time required to provide care to patients 
was reduced, ultimately leading to an improvement 
in patient outcomes and a decrease in complications 
associated with strokes.

As previously mentioned, this study presented a clinical 
decision-making model utilizing deep NNs known as 
U-Net-based CNNs for the automatic segmentation 
of ischemic stroke lesion tissue from MRI images. In 
other words, this study introduced a novel approach for 
segmenting MRI medical images using advanced deep 
NN architectures, specifically the U-Net, which directly 
generates segmentation maps from the raw input image 
pixels. To overcome the limited local data availability 
and Architectural Constraints of present study and 
enhance the segmentation process, several actions are 
recommended, including collecting additional local data, 
integrating MRI techniques to acquire extra metadata and 
better positional data, utilizing 3D convolutional layers, 
incorporating embedded layers between skip connections, 
and applying translated convolutional layers instead of 
expanding layers. Moreover, it is suggested that future 
researchers employ hybrid methodologies in their studies.

Furthermore, to achieve a successful outlook for the 
designed segmentation algorithms in the DL framework, 
addressing gaps, such as the lack of sufficient studies 
in this field and the absence of healthcare specialists’ 
involvement in the model development stages, as well 
as the scarcity of commercially applicable models in 
healthcare service centers in the country, is of significant 
importance.
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