
Background 
Breast cancer remains the most prevalent malignancy 
among women worldwide and a leading cause of cancer-
related mortality (1,2). Despite significant advances in 
diagnosis and treatment, predicting patient outcomes 
continues to be challenging due to the disease’s 
heterogeneity at both clinical and molecular levels (3,4). 
Accurate prognostic models are essential for guiding 
therapeutic decisions, optimizing resource allocation, and 
improving survival rates (5).

Traditional statistical approaches, such as Cox 
proportional hazards (CoxPH) models, have been widely 
applied for survival prediction (6). However, these methods 
often fail to capture the complex, non-linear relationships 
within high-dimensional clinical and genomic datasets 

(7,8). Recent advancements in machine learning (ML) 
have demonstrated promising results in cancer prognosis, 
offering the ability to uncover hidden patterns and 
interactions across diverse feature spaces (9,10).

Nevertheless, a major limitation in the current study is 
the lack of external validation. Many studies develop and 
evaluate ML models using a single dataset, which raises 
concerns about their generalizability across diverse 
populations (11). To address this issue, integrative 
analyses using independent, large-scale datasets are 
required (12).

The Molecular Taxonomy of Breast Cancer International 
Consortium (METABRIC) and The Cancer Genome Atlas 
(TCGA) represent two of the most comprehensive breast 
cancer resources, providing extensive clinical and genomic 
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Abstract
Background: Breast cancer remains the most prevalent malignancy among women worldwide, characterized by substantial 
heterogeneity in clinical outcomes. Accurate prognostic models are crucial for optimizing treatment decisions and improving 
survival. Traditional statistical methods, such as the Cox proportional hazards model, often fail to capture nonlinear relationships 
and high-dimensional genomic interactions. Recent advances in artificial intelligence (AI) and machine learning (ML) offer novel 
opportunities to integrate clinical and genomic data for improved predictive performance.
Methods: A comparative analysis of multiple prognostic models was conducted using two large-scale datasets: METABRIC (n = 1,904) 
and TCGA-BRCA (n = 1,097). Six models were evaluated: Cox proportional hazards (baseline), logistic regression, random forest, 
support vector machine, XGBoost, and deep neural networks (DNNs). Models were trained using a 70/30 split and optimized 
through grid search with five-fold cross-validation. Performance metrics included ROC-AUC, F1-score, and concordance index 
(C-index). External validation was conducted across datasets. Feature importance was assessed using SHAP analysis.
Results: XGBoost achieved the highest overall performance, with ROC-AUC scores of 0.85 (METABRIC) and 0.83 (TCGA), followed 
closely by DNN (ROC-AUC: 0.84 and 0.82, respectively). The traditional Cox models demonstrated lower predictive accuracy 
(C-index ~ 0.65). Cross-dataset validation confirmed the robustness of XGBoost and DNN (ROC-AUC 0.78–0.81), outperforming 
all other models. Risk stratification based on model-derived probabilities significantly separated high- and low-risk groups (log-
rank P < 0.001). Feature importance analysis identified both clinical factors (tumor size, nodal status, ER/HER2 status) and genomic 
markers (TP53, ESR1, BRCA1/2, MKI67) as key prognostic predictors.
Conclusion: This study provides strong evidence that AI-driven approaches, particularly XGBoost and DNN, outperform 
conventional models for breast cancer prognosis by integrating clinical and genomic features. These models demonstrate high 
predictive accuracy, robust generalizability, and biological interpretability, underscoring their potential to advance personalized 
treatment strategies. Prospective validation and integration into real-world clinical workflows are essential next steps toward 
clinical translation.
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data. While both datasets have been individually used 
for predictive modeling, few studies have systematically 
combined them to evaluate model robustness across 
cohorts (13-17).

This study aimed to develop and validate ML models 
for breast cancer prognosis using the METABRIC and 
TCGA cohorts. By applying a cross-dataset validation 
strategy, we seek to assess model generalizability, identify 
key prognostic features, and provide actionable insights 
for personalized medicine.

Methodology
Study Design
This study is a retrospective, multi-cohort analysis aimed 
at developing and validating ML models for breast cancer 
prognosis prediction. Two independent and large-scale 
datasets were employed, METABRIC and The Cancer 
Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA), 
to implement a cross-dataset validation strategy. This 
design ensures not only internal validity but also external 
generalizability of predictive models.

Data Sources
Molecular Taxonomy of Breast Cancer International 
Consortium Dataset
The METABRIC dataset includes 1,904 breast cancer 
patients with comprehensive clinical annotations and 
gene expression profiles. Available features include:
•	 Clinical: age, tumor size, histological grade, lymph 

node status, estrogen receptor (ER)/ progesterone 
receptor (PR)/ Human Epidermal Growth Factor 
Receptor 2 (HER2) receptor status, and treatment 
indicators.

•	 Molecular: mRNA expression of > 25,000 genes.
•	 Outcome: overall survival (OS, months) and 

censoring status.
•	 The dataset was obtained from Kaggle and cBioPortal.

The Cancer Genome Atlas Breast Invasive Carcinoma 
Dataset 
The TCGA-BRCA cohort contains 1,100 patients with 
invasive breast carcinoma. 

Data include:
•	 Clinical: demographic variables, tumor characteristics, 

receptor status, and staging.
•	 Molecular: RNA-Seq gene expression, somatic 

mutations, and copy number variations.
•	 Outcome: OS and progression-free interval (PFI).
•	 Data were accessed from the Genomic Data 

Commons (GDC) Data Portal.

Data Preprocessing
Cleaning
•	 Patients with missing survival time or censoring 

status were excluded.
•	 Continuous variables with missing values were 

imputed using median imputation, and categorical 

variables using mode imputation.
•	 Outliers were identified with the interquartile range 

(IQR) method and winsorized.

Feature Selection and Harmonization
•	 Shared clinical features between datasets (e.g., age, 

tumor size, nodal status, receptor status, tumor stage) 
were retained.

•	 For gene expression, the 500 most variable genes were 
selected using variance thresholding.

•	 Clinical and genomic variables were harmonized to 
ensure comparability between METABRIC and TCGA.

Normalization and Encoding
•	 Continuous variables were z-score normalized.
•	 Categorical features were one-hot encoded.
•	 Gene expression data were log2-transformed for 

variance stabilization.

Cohort Splitting and Validation
•	 Each dataset was divided into training (70%) and 

testing (30%) subsets.
•	 Cross-dataset validation was performed by training 

on one dataset (e.g., METABRIC) and testing on the 
other (e.g., TCGA), and vice versa.

Model Development
Six algorithms were employed, representing statistical, 
ML, and deep learning paradigms:

Cox Proportional Hazards (CoxPH) – baseline survival 
model
•	 Ties: Efron
•	 Regularization: Elastic Net (α = 0.1, 0.5, 1; l1_

ratio = 0.1, 0.5, 0.9)

Logistic Regression (LR) – baseline classification model
	• Solver: liblinear
	• Penalty: L1 and L2
	• C: [0.01, 0.1, 1, 10]
	• Max iterations: 500

Random Forest (RF) – ensemble method
•	 n_estimators: [100, 200, 500]
•	 Max depth: [5, 10, 20, None]
•	 Min_samples_split: [2, 5, 10]
•	 Min_samples_leaf: [1, 2, 4]
•	 Max_features: sqrt

Extreme Gradient Boosting (XGBoost) – boosting algorithm
•	 Learning rate: [0.01, 0.05, 0.1]
•	 n_estimators: [100, 200, 300]
•	 Max depth: [3, 5, 7]
•	 Subsample: [0.8, 1.0]
•	 Colsample_bytree: [0.8, 1.0]
•	 Gamma: [0, 0.1, 0.2]
•	 Reg_lambda: [1, 5, 10]



Digital Health Trends Journal. 2026;2(1)44

Beheshti et al

Support Vector Machine (SVM) – kernel-based method
•	 Kernel: linear, RBF
•	 C: [0.1, 1, 10]
•	 Gamma: [scale, 0.01, 0.001]
•	 Probability: True

Deep Neural Network (DNN) – deep learning approach
•	 Input: aligned clinical and genomic features
•	 Hidden layers: 2–5
•	 Neurons per layer: 64–512
•	 Activation: ReLU
•	 Dropout: 0.2–0.5
•	 Optimizer: Adam (lr = 0.001)
•	 Batch size: [32, 64, 128]
•	 Epochs: 100–200 (early stopping on validation loss)
•	 Loss: Binary cross-entropy (for classification), 

Negative log-partial likelihood (for DeepSurv 
survival analysis)

Hyperparameter Optimization
All models underwent hyperparameter tuning using grid 
search or randomized search with 5-fold cross-validation 
on the training sets.

Model Selection Criteria
•	 For classification tasks: ROC-AUC (primary), 

Accuracy, F1-score.
•	 For survival analysis: Concordance index (C-index)

Model Evaluation
Model performance was assessed in three distinct phases:
1.	 Internal validation: training and testing within the 

same dataset.
2.	 Cross-dataset validation: training on METABRIC 

and testing on TCGA, and vice versa.
3.	 Risk stratification: Kaplan–Meier curves were 

generated by dividing patients into high-risk and low-
risk groups based on predicted probabilities. Log-
rank tests were used to assess survival differences 
between the two groups.

Model Interpretation
•	 Feature importance was extracted from Random 

Forest (RF) and XGBoost models.
•	 Shapley Additive Explanations (SHAP) were applied 

across all models, including DNN, to quantify the 
contribution of individual clinical and genomic 
features to outcome prediction.

•	 The identified predictive features were mapped to 
established breast cancer biological pathways, such 
as ER signaling, HER2 amplification, and immune-
related gene sets.

Results
Cohort Characteristics
Table 1 summarizes the demographic and clinical 
characteristics of both datasets. The METABRIC cohort 

included 1,904 patients (median age: 61 years, range: 
26–96) with a median follow-up of 116 months, during 
which 56.4% of patients experienced an event (death). The 
TCGA-BRCA cohort comprised 1,097 patients (median 
age: 58 years, range: 24–90), with a median follow-up of 
40 months, and 32.8% of patients had an event.
•	 Hormone receptor–positive tumors were the 

predominant subtype in both cohorts (METABRIC: 
69.2%; TCGA: 71.5%).

•	 HER2-positive tumors accounted for 14.8% in 
METABRIC and 16.2% in TCGA.

•	 Triple-negative breast cancer (TNBC) represented 
12.6% of cases in METABRIC and 13.9% in TCGA.

Internal Validation Results
Molecular Taxonomy of Breast Cancer International 
Consortium Training–Testing (70/30 split)
•	 CoxPH baseline model achieved a C-index of 0.66.
•	 LR produced a ROC-AUC of 0.72.
•	 RF significantly improved performance with ROC-

AUC = 0.81, F1 = 0.78.
•	 XGBoost achieved the best performance (ROC-

AUC = 0.85, Accuracy = 0.80, F1 = 0.82).
•	 SVM (RBF kernel) reached an ROC-AUC = 0.78.
•	 DNN (4 layers with 256–128–64–32 neurons) 

achieved ROC-AUC = 0.84, Accuracy = 0.81, 
F1 = 0.80.

The Cancer Genome Atlas Training–Testing (70/30 split)
•	 CoxPH model: C-index = 0.65.
•	 LR: ROC-AUC: 0.71.
•	 RF: ROC-AUC = 0.79, F1 = 0.75.
•	 XGBoost: ROC-AUC = 0.83, Accuracy = 0.78, 

F1 = 0.79.
•	 SVM: ROC-AUC = 0.77.
•	 DNN: ROC-AUC = 0.82, Accuracy = 0.77, F1 = 0.78.

Cross-Dataset Validation
When training on METABRIC and testing on TCGA:
•	 CoxPH: C-index = 0.63
•	 RF: ROC-AUC = 0.75
•	 XGBoost: ROC-AUC = 0.79, F1 = 0.76

Table 1. Baseline Characteristics of METABRIC and TCGA-BRCA Cohorts

Characteristic
METABRIC 
(n = 1,904)

TCGA-BRCA 
(n = 1,097)

Sample size (n) 1,904 1,097

Median age (years, range) 61 (26–96) 58 (24–90)

Median follow-up (months) 116 40

Event rate (Death, %) 56.4% 32.8%

Hormone receptor–positive (%) 69.2% 71.5%

HER2-positive (%) 14.8% 16.2%

TNBC (%) 12.6% 13.9%

Note. METABRIC: Molecular taxonomy of breast cancer international 
consortium; TCGA-BRCA: The cancer genome atlas breast invasive 
carcinoma; HER2: Human epidermal growth factor receptor 2; TNBC: Triple-
negative breast cancer.
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•	 DNN: ROC-AUC = 0.78, F1 = 0.75
When training on TCGA and testing on METABRIC:

•	 CoxPH: C-index = 0.62
•	 RF: ROC-AUC = 0.76
•	 XGBoost: ROC-AUC = 0.81, F1 = 0.77
•	 DNN: ROC-AUC = 0.80, F1 = 0.78

These results demonstrate the consistent generalizability 
of XGBoost and DNN across independent datasets, 
confirming their superior performance compared to 
traditional CoxPH and LR models.

Risk Stratification Analysis
Figure 1 presents Kaplan–Meier survival curves for 
METABRIC and TCGA cohorts, stratified by XGBoost-
predicted risk scores:
•	 Patients were stratified into high-risk (top 30%) and 

low-risk (bottom 70%) groups based on predicted 
probabilities.

•	 Kaplan–Meier survival curves revealed significant 
separation between risk groups (P < 0.001, log-rank 
test) across both datasets.

•	 In METABRIC: 5-year OS was 86% in the low-risk 
group versus 52% in the high-risk group.

•	 In TCGA: 5-year OS was 80% in the low-risk group 
versus 48% in the high-risk group.

Feature Importance and Interpretability
Both RF and XGBoost identified key prognostic predictors:
•	 Clinical variables: age, tumor size, nodal status, ER 

status, HER2 status.
•	 Genomic features: expression of TP53, ESR1, 

HER2 (ERBB2), PGR, BRCA1/2, and proliferation-
associated genes (MKI67, CCNB1).

Shapley Additive Explanations analysis (Figure 2) 
revealed the following trends:
•	 Higher expression of ESR1 and PGR was associated 

with a protective effect (lower risk).
•	 Higher expression of TP53 mutations and MKI67 

levels indicated increased risk.

•	 HER2 amplification independently stratified patients, 
regardless of nodal status.

Model Comparison Summary
Table 2 represents the comparative performance of 
all models:
•	 AUC: Area under the receiver operating characteristic 

curve.
•	 C-index: Concordance index for survival analysis.
•	 Cross-Validation AUC: Performance range observed 

when training on one dataset (METABRIC or TCGA) 
and testing on the other.

•	 LR and SVM do not report C-index as they were used 
for classification tasks only.

•	 XGBoost consistently achieved the best predictive 
performance, followed closely by DNN.

Discussion
This study demonstrated that the integration of clinical 
and genomic data through advanced ML approaches 
significantly improved the prediction of breast cancer 
outcomes compared with traditional statistical methods. 
Among the evaluated algorithms, XGBoost consistently 
outperformed other models in both internal validation and 

Figure 1. Kaplan–Meier Plots for METABRIC and TCGA Stratified by XGBoost Predictions. Note. METABRIC: Molecular taxonomy of breast cancer international 
consortium; TCGA-BRCA: The cancer genome atlas breast invasive carcinoma; XGBoost: Extreme gradient boosting

Figure 2. Feature Importance
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cross-dataset generalizability, closely followed by DNN. 
In contrast, classical models such as the CoxPH model 
and LR showed substantially lower discriminatory ability, 
with C-indices and AUC values ranging from 0.65 to 0.72, 
highlighting the limitations of conventional approaches in 
handling high-dimensional, nonlinear genomic data.

The superior performance of XGBoost can be attributed 
to its ability to model complex nonlinear interactions 
and manage high-dimensional genomic inputs through 
gradient boosting and feature regularization. Similarly, 
the DNN achieved competitive results by learning 
hierarchical feature representations, supporting growing 
evidence that deep learning is particularly suitable for 
multi-omics cancer prediction tasks. These findings are 
consistent with previous studies. For example, Chaudhary 
et al demonstrated that a deep learning–based multi-
omics integration framework outperformed Cox models 
in predicting survival across multiple cancer types (18). 
Likewise, Wang M et al reported that XGBoost achieved 
higher prognostic accuracy than RF and Cox models in 
the TCGA breast cancer datasets (19).

The risk stratification analysis further highlighted 
the clinical applicability of the proposed models. Both 
XGBoost and DNN successfully differentiated patients 
into distinct high- and low-risk groups, with Kaplan–
Meier survival curves showing highly significant 
differences in overall survival (20,21). These results align 
with the work of Craven KE et al, who used ML for breast 
cancer subtyping and observed similar improvements in 
prognostic stratification. Importantly, our results were 
consistent across both METABRIC and TCGA datasets, 
demonstrating the robustness and generalizability of the 
proposed models (22).

The feature importance analysis identified several 
well-established prognostic biomarkers, including TP53, 
ESR1, HER2 (ERBB2), BRCA1/2, and MKI67, alongside 
traditional clinical predictors such as age, tumor size, 
and nodal status. The ability of these models to recover 
biologically relevant features supports both their 
interpretability and translational potential. Comparable 
findings have been reported by Shao et al, who showed 
that ML–based feature selection repeatedly identified 
TP53 mutations and ESR1 expression as key drivers of 
breast cancer prognosis (23-25).

From a clinical perspective, these results underscore the 

potential of ML–driven prognostic tools to complement 
or surpass traditional clinical staging systems. Integrating 
genomic and clinical data allows for more precise 
patient stratification, ultimately facilitating personalized 
treatment planning. For example, patients classified as 
high-risk may benefit from intensified systemic therapies 
or close follow-up, while low-risk patients may benefit 
from treatment de-escalation.

Despite these strengths, several limitations warrant 
consideration. First, although METABRIC and TCGA 
are among the largest publicly available breast cancer 
datasets, they may not fully capture the diversity of 
patient populations, particularly with respect to ethnicity, 
geographic variation, and treatment protocols. Second, 
while cross-dataset validation strengthens external 
generalizability, prospective validation using independent 
clinical cohorts will be essential to establish clinical 
utility. Third, although feature importance analyses were 
incorporated, the interpretability of deep learning models 
remains a challenge. Future studies should therefore 
explore explainable artificial intelligence (AI) frameworks 
to enhance transparency and clinical adoption.

In summary, this study highlights the value of XGBoost 
and DNNs in predicting breast cancer outcomes using 
integrated clinical and genomic data. Our findings not 
only replicate but also extend the results of prior studies, 
reinforcing the transformative role of AI in precision 
oncology. Future reinforcing should focus on external 
prospective validation, incorporation of multi-omics data 
(e.g., proteomics, epigenomics), and integration with 
electronic health records to develop real-world clinical 
decision support systems.

Conclusion
This study systematically evaluated the predictive 
performance of traditional statistical methods, ML 
models, and deep learning approaches for breast cancer 
prognosis using two large-scale, publicly available datasets 
(METABRIC and TCGA). The findings demonstrated that 
advanced ML models, particularly XGBoost and DNNs, 
consistently outperformed conventional CoxPH and LR 
models in both internal and cross-dataset validations.
The results highlight three key contributions:
1.	 Improved Predictive Accuracy: XGBoost achieved 

the highest prognostic accuracy (AUC up to 0.85), 

Table 2. Model Comparison Summary

Model METABRIC AUC TCGA AUC Cross-Validation AUC C-index (Survival)

CoxPH 0.66 0.65 0.62–0.63 0.63–0.66

Logistic Regression 0.72 0.71 0.68–0.70 –

Random Forest 0.81 0.79 0.75–0.76 0.70–0.72

XGBoost 0.85 0.83 0.79–0.81 0.74–0.77

SVM 0.78 0.77 0.73–0.74 –

DNN 0.84 0.82 0.78–0.80 0.73–0.76

Note. METABRIC: Molecular taxonomy of breast cancer international consortium; TCGA: The cancer genome atlas; AUC: Area under curve; C-index: Concordance 
index; CoxPH: Cox proportional hazards; XGBoost: Extreme gradient boosting; SVM: Support vector machine; DNN: Deep neural network.
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followed closely by DNN, indicating the superiority 
of modern AI-based approaches over traditional 
statistical models.

2.	 Robustness Across Cohorts: Both XGBoost and DNN 
maintained strong performance under cross-dataset 
validation, confirming their generalizability and 
potential for real-world clinical application.

3.	 Biological and Clinical Relevance: Feature importance 
and SHAP analyses identified well-established 
prognostic markers (TP53, ESR1, HER2, BRCA1/2, 
MKI67), alongside classical clinical variables such 
as tumor size and nodal status, reinforcing the 
interpretability and clinical significance of the 
proposed models.

From a translational perspective, these findings suggest 
that AI-driven prognostic models could complement 
or even enhance existing clinical decision-making 
frameworks by enabling personalized risk stratification 
and individualized treatment planning. Such tools can help 
identify high-risk patients requiring intensive therapies 
while supporting treatment de-escalation strategies in 
low-risk populations.

Nevertheless, several challenges remain before clinical 
deployment, including the need for prospective validation 
in diverse cohorts, improved interpretability of deep 
learning models, and integrating these approaches into 
real-world electronic health record systems. Future 
research should also expand toward multi-omics data 
(proteomics, metabolomics, epigenomics) to further refine 
predictive accuracy and uncover novel biological insights.

In conclusion, this study provides robust evidence that 
ML, particularly gradient boosting and DNNs, represents 
a promising direction for precision oncology. By bridging 
clinical and genomic data, these models can transform 
breast cancer prognosis and advance the broader vision of 
data-driven personalized medicine.
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