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Abstract \
Background: Breast cancer remains the most prevalent malignancy among women worldwide, characterized by substantial
heterogeneity in clinical outcomes. Accurate prognostic models are crucial for optimizing treatment decisions and improving
survival. Traditional statistical methods, such as the Cox proportional hazards model, often fail to capture nonlinear relationships
and high-dimensional genomic interactions. Recent advances in artificial intelligence (Al) and machine learning (ML) offer novel
opportunities to integrate clinical and genomic data for improved predictive performance.
Methods: A comparative analysis of multiple prognostic models was conducted using two large-scale datasets: METABRIC (n=1,904)
and TCGA-BRCA (n=1,097). Six models were evaluated: Cox proportional hazards (baseline), logistic regression, random forest,
support vector machine, XGBoost, and deep neural networks (DNNs). Models were trained using a 70/30 split and optimized
through grid search with five-fold cross-validation. Performance metrics included ROC-AUC, F1-score, and concordance index
(C-index). External validation was conducted across datasets. Feature importance was assessed using SHAP analysis.
Results: XGBoost achieved the highest overall performance, with ROC-AUC scores of 0.85 (METABRIC) and 0.83 (TCGA), followed
closely by DNN (ROC-AUC: 0.84 and 0.82, respectively). The traditional Cox models demonstrated lower predictive accuracy
(C-index ~ 0.65). Cross-dataset validation confirmed the robustness of XGBoost and DNN (ROC-AUC 0.78-0.81), outperforming
all other models. Risk stratification based on model-derived probabilities significantly separated high- and low-risk groups (log-
rank P<0.001). Feature importance analysis identified both clinical factors (tumor size, nodal status, ER/HER2 status) and genomic
markers (TP53, ESR1, BRCA1/2, MKI67) as key prognostic predictors.
Conclusion: This study provides strong evidence that Al-driven approaches, particularly XGBoost and DNN, outperform
conventional models for breast cancer prognosis by integrating clinical and genomic features. These models demonstrate high
predictive accuracy, robust generalizability, and biological interpretability, underscoring their potential to advance personalized
treatment strategies. Prospective validation and integration into real-world clinical workflows are essential next steps toward
clinical translation.
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Background

Breast cancer remains the most prevalent malignancy
among women worldwide and a leading cause of cancer-
related mortality (1,2). Despite significant advances in
diagnosis and treatment, predicting patient outcomes
continues to be challenging due to the disease’s
heterogeneity at both clinical and molecular levels (3,4).
Accurate prognostic models are essential for guiding
therapeutic decisions, optimizing resource allocation, and
improving survival rates (5).

Traditional statistical approaches, such as Cox
proportional hazards (CoxPH) models, have been widely
applied for survival prediction (6). However, these methods
often fail to capture the complex, non-linear relationships
within high-dimensional clinical and genomic datasets

(7,8). Recent advancements in machine learning (ML)
have demonstrated promising results in cancer prognosis,
offering the ability to uncover hidden patterns and
interactions across diverse feature spaces (9,10).

Nevertheless, a major limitation in the current study is
the lack of external validation. Many studies develop and
evaluate ML models using a single dataset, which raises
concerns about their generalizability across diverse
populations (11). To address this issue, integrative
analyses using independent, large-scale datasets are
required (12).

The Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC) and The Cancer Genome Atlas
(TCGA) represent two of the most comprehensive breast
cancer resources, providing extensive clinical and genomic
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data. While both datasets have been individually used
for predictive modeling, few studies have systematically
combined them to evaluate model robustness across
cohorts (13-17).

This study aimed to develop and validate ML models
for breast cancer prognosis using the METABRIC and
TCGA cohorts. By applying a cross-dataset validation
strategy, we seek to assess model generalizability, identify
key prognostic features, and provide actionable insights
for personalized medicine.

Methodology

Study Design

This study is a retrospective, multi-cohort analysis aimed
at developing and validating ML models for breast cancer
prognosis prediction. Two independent and large-scale
datasets were employed, METABRIC and The Cancer
Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA),
to implement a cross-dataset validation strategy. This
design ensures not only internal validity but also external
generalizability of predictive models.

Data Sources

Molecular Taxonomy of Breast Cancer International

Consortium Dataset

The METABRIC dataset includes 1,904 breast cancer

patients with comprehensive clinical annotations and

gene expression profiles. Available features include:

o  Clinical: age, tumor size, histological grade, lymph
node status, estrogen receptor (ER)/ progesterone
receptor (PR)/ Human Epidermal Growth Factor
Receptor 2 (HER2) receptor status, and treatment
indicators.

o Molecular: mRNA expression of >25,000 genes.

e Outcome: overall survival (OS, months) and
censoring status.

o The dataset was obtained from Kaggle and cBioPortal.

The Cancer Genome Atlas Breast Invasive Carcinoma

Dataset

The TCGA-BRCA cohort contains 1,100 patients with

invasive breast carcinoma.

Data include:

«  Clinical:demographicvariables, tumor characteristics,
receptor status, and staging.

o Molecular: RNA-Seq gene expression, somatic
mutations, and copy number variations.

o Outcome: OS and progression-free interval (PFI).

o Data were accessed from the Genomic Data
Commons (GDC) Data Portal.

Data Preprocessing

Cleaning

o Patients with missing survival time or censoring
status were excluded.

« Continuous variables with missing values were
imputed using median imputation, and categorical

varijables using mode imputation.
o Outliers were identified with the interquartile range
(IQR) method and winsorized.

Feature Selection and Harmonization

o  Shared clinical features between datasets (e.g., age,
tumor size, nodal status, receptor status, tumor stage)
were retained.

o For gene expression, the 500 most variable genes were
selected using variance thresholding.

o  Clinical and genomic variables were harmonized to
ensure comparability between METABRIC and TCGA.

Normalization and Encoding

o  Continuous variables were z-score normalized.

o Categorical features were one-hot encoded.

o Gene expression data were log2-transformed for
variance stabilization.

Cohort Splitting and Validation

o Each dataset was divided into training (70%) and
testing (30%) subsets.

o Cross-dataset validation was performed by training
on one dataset (e.g., METABRIC) and testing on the
other (e.g., TCGA), and vice versa.

Model Development
Six algorithms were employed, representing statistical,
ML, and deep learning paradigms:

Cox Proportional Hazards (CoxPH) - baseline survival

model

e Ties: Efron

o  Regularization: Elastic Net (a=0.1, 0.5, 1; 11_
ratio=0.1, 0.5, 0.9)

Logistic Regression (LR) - baseline classification model
o Solver: liblinear

o DPenalty: L1 and L2

« C:[0.01,0.1,1, 10]

o Max iterations: 500

Random Forest (RF) - ensemble method
e n_estimators: [100, 200, 500]

e Max depth: [5, 10, 20, None]

e Min_samples_split: [2, 5, 10]

o Min_samples_leaf: [1, 2, 4]

o Max_features: sqrt

Extreme Gradient Boosting (XGBoost) — boosting algorithm
o Learning rate: [0.01, 0.05, 0.1]

o n_estimators: [100, 200, 300]

o Max depth: [3,5,7]

o Subsample: [0.8, 1.0]

o Colsample_bytree: [0.8, 1.0]

e Gamma: [0, 0.1, 0.2]

o Reg_lambda: [1, 5, 10]
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Support Vector Machine (SVM) - kernel-based method
o Kernel: linear, RBF

. C:[0.1,1,10]

o  Gamma: [scale, 0.01, 0.001]

o Probability: True

Deep Neural Network (DNN) - deep learning approach

o Input: aligned clinical and genomic features

o  Hidden layers: 2-5

«  Neurons per layer: 64-512

o Activation: ReLU

o Dropout: 0.2-0.5

o Optimizer: Adam (Ir=0.001)

e  Batch size: [32, 64, 128]

o Epochs: 100-200 (early stopping on validation loss)

o Loss: Binary cross-entropy (for classification),
Negative log-partial likelihood (for DeepSurv
survival analysis)

Hyperparameter Optimization

All models underwent hyperparameter tuning using grid
search or randomized search with 5-fold cross-validation
on the training sets.

Model Selection Criteria

e For classification tasks: ROC-AUC (primary),
Accuracy, F1-score.

e  For survival analysis: Concordance index (C-index)

Model Evaluation

Model performance was assessed in three distinct phases:

1. Internal validation: training and testing within the
same dataset.

2. Cross-dataset validation: training on METABRIC
and testing on TCGA, and vice versa.

3. Risk stratification: Kaplan-Meier curves were
generated by dividing patients into high-risk and low-
risk groups based on predicted probabilities. Log-
rank tests were used to assess survival differences
between the two groups.

Model Interpretation

e Feature importance was extracted from Random
Forest (RF) and XGBoost models.

e  Shapley Additive Explanations (SHAP) were applied
across all models, including DNN, to quantify the
contribution of individual clinical and genomic
features to outcome prediction.

e The identified predictive features were mapped to
established breast cancer biological pathways, such
as ER signaling, HER2 amplification, and immune-
related gene sets.

Results

Cohort Characteristics

Table 1 summarizes the demographic and clinical
characteristics of both datasets. The METABRIC cohort

Table 1. Baseline Characteristics of METABRIC and TCGA-BRCA Cohorts

Characteristic METABRIC TCGA-BRCA
(n=1,904) (n=1,097)
Sample size (n) 1,904 1,097
Median age (years, range) 61 (26-96) 58 (24-90)
Median follow-up (months) 116 40
Event rate (Death, %) 56.4% 32.8%
Hormone receptor—positive (%) 69.2% 71.5%
HER2-positive (%) 14.8% 16.2%
TNBC (%) 12.6% 13.9%

Note. METABRIC: Molecular taxonomy of breast cancer international
consortium; TCGA-BRCA: The cancer genome atlas breast invasive
carcinoma; HER2: Human epidermal growth factor receptor 2; TNBC: Triple-
negative breast cancer.

included 1,904 patients (median age: 61 years, range:

26-96) with a median follow-up of 116 months, during

which 56.4% of patients experienced an event (death). The

TCGA-BRCA cohort comprised 1,097 patients (median

age: 58 years, range: 24-90), with a median follow-up of

40 months, and 32.8% of patients had an event.

o Hormone receptor-positive tumors were the
predominant subtype in both cohorts (METABRIC:
69.2%; TCGA: 71.5%).

o HER2-positive tumors accounted for 14.8% in
METABRIC and 16.2% in TCGA.

o  Triple-negative breast cancer (TNBC) represented
12.6% of cases in METABRIC and 13.9% in TCGA.

Internal Validation Results

Molecular Taxonomy of Breast Cancer International

Consortium Training-Testing (70/30 split)

o CoxPH baseline model achieved a C-index of 0.66.

o LR produced a ROC-AUC of 0.72.

« RF significantly improved performance with ROC-
AUC=0.81, F1=0.78.

o XGBoost achieved the best performance (ROC-
AUC=0.85, Accuracy=0.80, F1=0.82).

e  SVM (RBF kernel) reached an ROC-AUC=0.78.

o DNN (4 layers with 256-128-64-32 neurons)
achieved ROC-AUC=0.84, Accuracy=0.81,
F1=0.80.

The Cancer Genome Atlas Training-Testing (70/30 split)

e  CoxPH model: C-index=0.65.

e« LR:ROC-AUC: 0.71.

e RF:ROC-AUC=0.79, F1=0.75.

e  XGBoost: ROC-AUC=0.83,
F1=0.79.

e SVM:ROC-AUC=0.77.

e DNN: ROC-AUC=0.82, Accuracy=0.77, F1=0.78.

Accuracy=0.78,

Cross-Dataset Validation

When training on METABRIC and testing on TCGA:
o CoxPH: C-index=0.63

« RF:ROC-AUC=0.75

o XGBoost: ROC-AUC=0.79, F1=0.76
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Figure 1a: METABRIC - Kaplan-Meier Survival Curves (XGBoost)
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Figure 1b: TCGA - Kaplan-Meier Survival Curves (XGBoost)
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Figure 1. Kaplan-Meier Plots for METABRIC and TCGA Stratified by XGBoost Predictions. Note. METABRIC: Molecular taxonomy of breast cancer international
consortium; TCGA-BRCA: The cancer genome atlas breast invasive carcinoma; XGBoost: Extreme gradient boosting

o« DNN:ROC-AUC=0.78,F1=0.75

When training on TCGA and testing on METABRIC:
o CoxPH: C-index=0.62
+ RF:ROC-AUC=0.76
o XGBoost: ROC-AUC=0.81, F1=0.77
+ DNN:ROC-AUC=0.80, F1=0.78

These results demonstrate the consistent generalizability
of XGBoost and DNN across independent datasets,
confirming their superior performance compared to
traditional CoxPH and LR models.

Risk Stratification Analysis

Figure 1 presents Kaplan-Meier survival curves for

METABRIC and TCGA cohorts, stratified by XGBoost-

predicted risk scores:

o  DPatients were stratified into high-risk (top 30%) and
low-risk (bottom 70%) groups based on predicted
probabilities.

o Kaplan-Meier survival curves revealed significant
separation between risk groups (P<0.001, log-rank
test) across both datasets.

o In METABRIC: 5-year OS was 86% in the low-risk
group versus 52% in the high-risk group.

o In TCGA: 5-year OS was 80% in the low-risk group
versus 48% in the high-risk group.

Feature Importance and Interpretability

Both RF and XGBoostidentified key prognostic predictors:

o  Clinical variables: age, tumor size, nodal status, ER
status, HER?2 status.

o Genomic features: expression of TP53, ESRI,
HER2 (ERBB2), PGR, BRCA1/2, and proliferation-
associated genes (MKI67, CCNBI).

Shapley Additive Explanations analysis (Figure 2)
revealed the following trends:

o Higher expression of ESRI and PGR was associated
with a protective effect (lower risk).

o Higher expression of TP53 mutations and MKI67
levels indicated increased risk.

Figure 2: Feature Importance (XGBoost - SHAP Analysis)

Tumor Size
Nodal Status
ER Status
HER2 Status
TP53

ESR1
BRCA1/2

MKI67
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Mean |[SHAP Value| (Impact on Model Output)

0.00

Figure 2. Feature Importance

o HER2 amplification independently stratified patients,
regardless of nodal status.

Model Comparison Summary

Table 2 represents the comparative performance of

all models:

o AUC: Area under the receiver operating characteristic
curve.

o C-index: Concordance index for survival analysis.

o Cross-Validation AUC: Performance range observed
when training on one dataset (METABRIC or TCGA)
and testing on the other.

o LRand SVM do not report C-index as they were used
for classification tasks only.

o XGBoost consistently achieved the best predictive
performance, followed closely by DNN.

Discussion

This study demonstrated that the integration of clinical
and genomic data through advanced ML approaches
significantly improved the prediction of breast cancer
outcomes compared with traditional statistical methods.
Among the evaluated algorithms, XGBoost consistently
outperformed other models in both internal validation and
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Table 2. Model Comparison Summary

Model METABRIC AUC TCGA AUC Cross-Validation AUC C-index (Survival)
CoxPH 0.66 0.65 0.62-0.63 0.63-0.66
Logistic Regression 0.72 0.71 0.68-0.70 -
Random Forest 0.81 0.79 0.75-0.76 0.70-0.72
XGBoost 0.85 0.83 0.79-0.81 0.74-0.77
SVM 0.78 0.77 0.73-0.74 -

DNN 0.84 0.82 0.78-0.80 0.73-0.76

Note. METABRIC: Molecular taxonomy of breast cancer international consortium; TCGA: The cancer genome atlas; AUC: Area under curve; C-index: Concordance
index; CoxPH: Cox proportional hazards; XGBoost: Extreme gradient boosting; SVM: Support vector machine; DNN: Deep neural network.

cross-dataset generalizability, closely followed by DNN.
In contrast, classical models such as the CoxPH model
and LR showed substantially lower discriminatory ability,
with C-indices and AUC values ranging from 0.65 to 0.72,
highlighting the limitations of conventional approaches in
handling high-dimensional, nonlinear genomic data.

The superior performance of XGBoost can be attributed
to its ability to model complex nonlinear interactions
and manage high-dimensional genomic inputs through
gradient boosting and feature regularization. Similarly,
the DNN achieved competitive results by learning
hierarchical feature representations, supporting growing
evidence that deep learning is particularly suitable for
multi-omics cancer prediction tasks. These findings are
consistent with previous studies. For example, Chaudhary
et al demonstrated that a deep learning-based multi-
omics integration framework outperformed Cox models
in predicting survival across multiple cancer types (18).
Likewise, Wang M et al reported that XGBoost achieved
higher prognostic accuracy than RF and Cox models in
the TCGA breast cancer datasets (19).

The risk stratification analysis further highlighted
the clinical applicability of the proposed models. Both
XGBoost and DNN successfully differentiated patients
into distinct high- and low-risk groups, with Kaplan-
Meier survival curves showing highly significant
differences in overall survival (20,21). These results align
with the work of Craven KE et al, who used ML for breast
cancer subtyping and observed similar improvements in
prognostic stratification. Importantly, our results were
consistent across both METABRIC and TCGA datasets,
demonstrating the robustness and generalizability of the
proposed models (22).

The feature importance analysis identified several
well-established prognostic biomarkers, including TP53,
ESR1, HER2 (ERBB2), BRCA1/2, and MKI67, alongside
traditional clinical predictors such as age, tumor size,
and nodal status. The ability of these models to recover
biologically relevant features supports both their
interpretability and translational potential. Comparable
findings have been reported by Shao et al, who showed
that ML-based feature selection repeatedly identified
TP53 mutations and ESRI expression as key drivers of
breast cancer prognosis (23-25).

From a clinical perspective, these results underscore the

potential of ML-driven prognostic tools to complement
or surpass traditional clinical staging systems. Integrating
genomic and clinical data allows for more precise
patient stratification, ultimately facilitating personalized
treatment planning. For example, patients classified as
high-risk may benefit from intensified systemic therapies
or close follow-up, while low-risk patients may benefit
from treatment de-escalation.

Despite these strengths, several limitations warrant
consideration. First, although METABRIC and TCGA
are among the largest publicly available breast cancer
datasets, they may not fully capture the diversity of
patient populations, particularly with respect to ethnicity,
geographic variation, and treatment protocols. Second,
while cross-dataset validation strengthens external
generalizability, prospective validation using independent
clinical cohorts will be essential to establish clinical
utility. Third, although feature importance analyses were
incorporated, the interpretability of deep learning models
remains a challenge. Future studies should therefore
explore explainable artificial intelligence (AI) frameworks
to enhance transparency and clinical adoption.

In summary, this study highlights the value of XGBoost
and DNNs in predicting breast cancer outcomes using
integrated clinical and genomic data. Our findings not
only replicate but also extend the results of prior studies,
reinforcing the transformative role of Al in precision
oncology. Future reinforcing should focus on external
prospective validation, incorporation of multi-omics data
(e.g., proteomics, epigenomics), and integration with
electronic health records to develop real-world clinical
decision support systems.

Conclusion
This study systematically evaluated the predictive
performance of traditional statistical methods, ML
models, and deep learning approaches for breast cancer
prognosis using two large-scale, publicly available datasets
(METABRIC and TCGA). The findings demonstrated that
advanced ML models, particularly XGBoost and DNNs,
consistently outperformed conventional CoxPH and LR
models in both internal and cross-dataset validations.
The results highlight three key contributions:
1. Improved Predictive Accuracy: XGBoost achieved
the highest prognostic accuracy (AUC up to 0.85),
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followed closely by DNN, indicating the superiority
of modern Al-based approaches over traditional
statistical models.

2. Robustness Across Cohorts: Both XGBoost and DNN
maintained strong performance under cross-dataset
validation, confirming their generalizability and
potential for real-world clinical application.

3. Biological and Clinical Relevance: Feature importance
and SHAP analyses identified well-established
prognostic markers (TP53, ESR1, HER2, BRCA1/2,
MKI67), alongside classical clinical variables such
as tumor size and nodal status, reinforcing the
interpretability and clinical significance of the
proposed models.

From a translational perspective, these findings suggest
that Al-driven prognostic models could complement
or even enhance existing clinical decision-making
frameworks by enabling personalized risk stratification
and individualized treatment planning. Such tools can help
identify high-risk patients requiring intensive therapies
while supporting treatment de-escalation strategies in
low-risk populations.

Nevertheless, several challenges remain before clinical
deployment, including the need for prospective validation
in diverse cohorts, improved interpretability of deep
learning models, and integrating these approaches into
real-world electronic health record systems. Future
research should also expand toward multi-omics data
(proteomics, metabolomics, epigenomics) to further refine
predictive accuracy and uncover novel biological insights.

In conclusion, this study provides robust evidence that
ML, particularly gradient boosting and DNNs, represents
a promising direction for precision oncology. By bridging
clinical and genomic data, these models can transform
breast cancer prognosis and advance the broader vision of
data-driven personalized medicine.
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